Rachael Tulip , Sebastian Andersson , Robert Chuter , Spyros Manolopoulos
{"title":"基于深度学习的合成计算机断层成像在女性盆腔放疗规划中的应用","authors":"Rachael Tulip , Sebastian Andersson , Robert Chuter , Spyros Manolopoulos","doi":"10.1016/j.phro.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100719"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning\",\"authors\":\"Rachael Tulip , Sebastian Andersson , Robert Chuter , Spyros Manolopoulos\",\"doi\":\"10.1016/j.phro.2025.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"33 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning
Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.