噻吩喹啉离子铱(III)配合物作为高效声动力治疗的声敏剂

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Zhuang Lv , Pei Zhang , Ke Hua , Jiayang Jiang
{"title":"噻吩喹啉离子铱(III)配合物作为高效声动力治疗的声敏剂","authors":"Zhuang Lv ,&nbsp;Pei Zhang ,&nbsp;Ke Hua ,&nbsp;Jiayang Jiang","doi":"10.1016/j.jorganchem.2025.123547","DOIUrl":null,"url":null,"abstract":"<div><div>Sonodynamic therapy (SDT) is an emerging cancer therapeutic method whose mechanism is very similar to that of photodynamic therapy (PDT), with the primary difference being that its excitation source is ultrasound. Hence, SDT has significantly a greater penetration depth, making it more suitable for treating deep-seated tumors. Sonosensitizers, as a key component of SDT, can be excited by ultrasound and generate reactive oxygen species (ROS). In this work, two novel ionic iridium(III) complexes (Ir1 and Ir2) bearing a 4-methyl-2-(thiophen-2-yl)quinolone cyclometalating ligand are synthesized, and their photophysical properties, sono-chemical properties and <em>in vitro</em> SDT are studied. Ir1 and Ir2 have long excited-state lifetimes and exhibit good stability under ultrasound and at different pH values. These two iridium(III) complexes can generate singlet oxygen under ultrasound both in solution and in cells. They show good biocompatibility in the absence of ultrasound and high toxicity in the presence of ultrasound, indicating their great potential for sonodynamic therapy applications.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1029 ","pages":"Article 123547"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thienylquinoline-based ionic Iridium(III) complexes as highly efficient Sonosensitizers for Sonodynamic therapy\",\"authors\":\"Zhuang Lv ,&nbsp;Pei Zhang ,&nbsp;Ke Hua ,&nbsp;Jiayang Jiang\",\"doi\":\"10.1016/j.jorganchem.2025.123547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sonodynamic therapy (SDT) is an emerging cancer therapeutic method whose mechanism is very similar to that of photodynamic therapy (PDT), with the primary difference being that its excitation source is ultrasound. Hence, SDT has significantly a greater penetration depth, making it more suitable for treating deep-seated tumors. Sonosensitizers, as a key component of SDT, can be excited by ultrasound and generate reactive oxygen species (ROS). In this work, two novel ionic iridium(III) complexes (Ir1 and Ir2) bearing a 4-methyl-2-(thiophen-2-yl)quinolone cyclometalating ligand are synthesized, and their photophysical properties, sono-chemical properties and <em>in vitro</em> SDT are studied. Ir1 and Ir2 have long excited-state lifetimes and exhibit good stability under ultrasound and at different pH values. These two iridium(III) complexes can generate singlet oxygen under ultrasound both in solution and in cells. They show good biocompatibility in the absence of ultrasound and high toxicity in the presence of ultrasound, indicating their great potential for sonodynamic therapy applications.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1029 \",\"pages\":\"Article 123547\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X25000415\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25000415","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

声动力疗法(SDT)是一种新兴的癌症治疗方法,其机制与光动力疗法(PDT)非常相似,主要区别在于其激发源为超声。因此,SDT具有更大的穿透深度,更适合于治疗深部肿瘤。超声敏化剂是SDT的重要组成部分,可通过超声激发产生活性氧(ROS)。本文合成了含4-甲基-2-(噻吩-2-基)喹诺酮环金属化配体的两个新型离子铱(III)配合物Ir1和Ir2,并对其光物理性质、声化学性质和体外SDT进行了研究。Ir1和Ir2具有较长的激发态寿命,在超声和不同pH值下表现出良好的稳定性。这两种铱(III)配合物在溶液和细胞内均能在超声作用下产生单线态氧。它们在无超声条件下表现出良好的生物相容性,在超声条件下表现出高毒性,表明它们在声动力治疗方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thienylquinoline-based ionic Iridium(III) complexes as highly efficient Sonosensitizers for Sonodynamic therapy

Thienylquinoline-based ionic Iridium(III) complexes as highly efficient Sonosensitizers for Sonodynamic therapy
Sonodynamic therapy (SDT) is an emerging cancer therapeutic method whose mechanism is very similar to that of photodynamic therapy (PDT), with the primary difference being that its excitation source is ultrasound. Hence, SDT has significantly a greater penetration depth, making it more suitable for treating deep-seated tumors. Sonosensitizers, as a key component of SDT, can be excited by ultrasound and generate reactive oxygen species (ROS). In this work, two novel ionic iridium(III) complexes (Ir1 and Ir2) bearing a 4-methyl-2-(thiophen-2-yl)quinolone cyclometalating ligand are synthesized, and their photophysical properties, sono-chemical properties and in vitro SDT are studied. Ir1 and Ir2 have long excited-state lifetimes and exhibit good stability under ultrasound and at different pH values. These two iridium(III) complexes can generate singlet oxygen under ultrasound both in solution and in cells. They show good biocompatibility in the absence of ultrasound and high toxicity in the presence of ultrasound, indicating their great potential for sonodynamic therapy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信