精粹标量场与宇宙常数:多组分暗能量模型的动力学

IF 2.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Prasanta Sahoo, Nandan Roy, Himadri Shekhar Mondal
{"title":"精粹标量场与宇宙常数:多组分暗能量模型的动力学","authors":"Prasanta Sahoo,&nbsp;Nandan Roy,&nbsp;Himadri Shekhar Mondal","doi":"10.1007/s10714-025-03372-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the dynamics and phase-space behavior of a multi-component dark energy model, where the dark sector consists of a minimally coupled canonical scalar field and the cosmological constant, using a dynamical system analysis setup for various types of potential for which a general parameterization of the scalar field potentials has been considered. Several fixed points with different cosmological behaviors have been identified. A detailed stability analysis has been done and possible late-time attractors have been found. For this multi-component dark energy model, the late-time attractors are either fully dominated by the cosmological constant or represent a scenario where a combination of the scalar field and the cosmological constant dominates the universe. In this type of model, there is a possibility that the scalar field can become dynamical quite early compared to the standard era of dark energy domination. However, our analysis indicates that this early time contribution of the scalar field occurs deep in the matter-dominated era, not before the recombination era.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03372-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Quintessence scalar field and cosmological constant: dynamics of a multi-component dark energy model\",\"authors\":\"Prasanta Sahoo,&nbsp;Nandan Roy,&nbsp;Himadri Shekhar Mondal\",\"doi\":\"10.1007/s10714-025-03372-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the dynamics and phase-space behavior of a multi-component dark energy model, where the dark sector consists of a minimally coupled canonical scalar field and the cosmological constant, using a dynamical system analysis setup for various types of potential for which a general parameterization of the scalar field potentials has been considered. Several fixed points with different cosmological behaviors have been identified. A detailed stability analysis has been done and possible late-time attractors have been found. For this multi-component dark energy model, the late-time attractors are either fully dominated by the cosmological constant or represent a scenario where a combination of the scalar field and the cosmological constant dominates the universe. In this type of model, there is a possibility that the scalar field can become dynamical quite early compared to the standard era of dark energy domination. However, our analysis indicates that this early time contribution of the scalar field occurs deep in the matter-dominated era, not before the recombination era.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-025-03372-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03372-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03372-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了一个多组分暗能量模型的动力学和相空间行为,其中暗扇区由最小耦合的正则标量场和宇宙常数组成,使用了各种类型的势的动力系统分析设置,其中考虑了标量场势的一般参数化。已经确定了几个具有不同宇宙学行为的不动点。进行了详细的稳定性分析,并发现了可能的后期吸引子。对于这个多组分暗能量模型,晚时间吸引子要么完全由宇宙常数主导,要么代表了一个标量场和宇宙常数的组合主导宇宙的场景。在这种类型的模型中,与暗能量主导的标准时代相比,标量场有可能更早地成为动态的。然而,我们的分析表明,标量场的早期时间贡献发生在物质主导时代的深处,而不是在重组时代之前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quintessence scalar field and cosmological constant: dynamics of a multi-component dark energy model

This study explores the dynamics and phase-space behavior of a multi-component dark energy model, where the dark sector consists of a minimally coupled canonical scalar field and the cosmological constant, using a dynamical system analysis setup for various types of potential for which a general parameterization of the scalar field potentials has been considered. Several fixed points with different cosmological behaviors have been identified. A detailed stability analysis has been done and possible late-time attractors have been found. For this multi-component dark energy model, the late-time attractors are either fully dominated by the cosmological constant or represent a scenario where a combination of the scalar field and the cosmological constant dominates the universe. In this type of model, there is a possibility that the scalar field can become dynamical quite early compared to the standard era of dark energy domination. However, our analysis indicates that this early time contribution of the scalar field occurs deep in the matter-dominated era, not before the recombination era.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信