应变掺p石墨烯的磁量子相变扩展

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Natalia Cortés, J. Hernández-Tecorralco, L. Meza-Montes, R. de Coss and Patricio Vargas
{"title":"应变掺p石墨烯的磁量子相变扩展","authors":"Natalia Cortés, J. Hernández-Tecorralco, L. Meza-Montes, R. de Coss and Patricio Vargas","doi":"10.1039/D4CP04573D","DOIUrl":null,"url":null,"abstract":"<p >We explore quantum-thermodynamic effects in a phosphorous (P)-doped graphene monolayer subjected to biaxial tensile strain. Introducing substitutional P atoms in the graphene lattice generates a tunable spin magnetic moment controlled by the strain control parameter <em>ε</em>. This leads to a magnetic quantum phase transition (MQPT) at zero temperature modulated by <em>ε</em>. The system transitions from a magnetic phase, characterized by an out-of-plane sp<small><sup>3</sup></small> type hybridization of the P–carbon (P–C) bonds, to a non-magnetic phase when these bonds switch to in-plane sp<small><sup>2</sup></small> hybridization. Employing a Fermi–Dirac statistical model, we calculate key thermodynamic quantities such as the electronic entropy <em>S</em><small><sub>e</sub></small> and electronic specific heat <em>C</em><small><sub>e</sub></small>. At finite temperatures, we find a MQPT extension characterized by <em>S</em><small><sub>e</sub></small> and <em>C</em><small><sub>e</sub></small>, where both display a distinctive Λ-shape profile as a function of <em>ε</em>. These thermodynamic quantities sharply increase up to <em>ε</em> = 5% in the magnetic regime, followed by a sudden drop at <em>ε</em> = 5.5%, transitioning to a linear dependence on <em>ε</em> in the nonmagnetic regime. This controllable magnetic-to-nonmagnetic switch offers potential applications in electronic nanodevices operating at finite temperatures.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 9","pages":" 4627-4633"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d4cp04573d?page=search","citationCount":"0","resultStr":"{\"title\":\"Magnetic quantum phase transition extension in strained P-doped graphene\",\"authors\":\"Natalia Cortés, J. Hernández-Tecorralco, L. Meza-Montes, R. de Coss and Patricio Vargas\",\"doi\":\"10.1039/D4CP04573D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We explore quantum-thermodynamic effects in a phosphorous (P)-doped graphene monolayer subjected to biaxial tensile strain. Introducing substitutional P atoms in the graphene lattice generates a tunable spin magnetic moment controlled by the strain control parameter <em>ε</em>. This leads to a magnetic quantum phase transition (MQPT) at zero temperature modulated by <em>ε</em>. The system transitions from a magnetic phase, characterized by an out-of-plane sp<small><sup>3</sup></small> type hybridization of the P–carbon (P–C) bonds, to a non-magnetic phase when these bonds switch to in-plane sp<small><sup>2</sup></small> hybridization. Employing a Fermi–Dirac statistical model, we calculate key thermodynamic quantities such as the electronic entropy <em>S</em><small><sub>e</sub></small> and electronic specific heat <em>C</em><small><sub>e</sub></small>. At finite temperatures, we find a MQPT extension characterized by <em>S</em><small><sub>e</sub></small> and <em>C</em><small><sub>e</sub></small>, where both display a distinctive Λ-shape profile as a function of <em>ε</em>. These thermodynamic quantities sharply increase up to <em>ε</em> = 5% in the magnetic regime, followed by a sudden drop at <em>ε</em> = 5.5%, transitioning to a linear dependence on <em>ε</em> in the nonmagnetic regime. This controllable magnetic-to-nonmagnetic switch offers potential applications in electronic nanodevices operating at finite temperatures.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 9\",\"pages\":\" 4627-4633\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d4cp04573d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04573d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04573d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了受双轴拉伸应变影响的磷(P)掺杂石墨烯单层中的量子热力学效应。在石墨烯晶格中引入取代的P原子会产生由应变控制参数ε控制的可调谐自旋磁矩。这导致了ε调制的零温度下的磁量子相变(MQPT)。当p -碳(P-C)键转变为面内sp2杂化时,系统从以面外sp3型杂化为特征的磁性相转变为非磁性相。利用费米-狄拉克统计模型,我们计算了电子熵Se和电子比热Ce等关键热力学量。在有限温度下,我们发现了以Se和Ce为特征的MQPT扩展,其中两者都显示出作为ε函数的独特Λ-shape剖面。这些热力学量在磁畴中急剧增加到ε = 5%,随后在ε = 5.5%时突然下降,在非磁畴中转变为与ε的线性依赖关系。这种可控的磁-非磁开关在有限温度下工作的电子纳米器件中提供了潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic quantum phase transition extension in strained P-doped graphene

Magnetic quantum phase transition extension in strained P-doped graphene

Magnetic quantum phase transition extension in strained P-doped graphene

We explore quantum-thermodynamic effects in a phosphorous (P)-doped graphene monolayer subjected to biaxial tensile strain. Introducing substitutional P atoms in the graphene lattice generates a tunable spin magnetic moment controlled by the strain control parameter ε. This leads to a magnetic quantum phase transition (MQPT) at zero temperature modulated by ε. The system transitions from a magnetic phase, characterized by an out-of-plane sp3 type hybridization of the P–carbon (P–C) bonds, to a non-magnetic phase when these bonds switch to in-plane sp2 hybridization. Employing a Fermi–Dirac statistical model, we calculate key thermodynamic quantities such as the electronic entropy Se and electronic specific heat Ce. At finite temperatures, we find a MQPT extension characterized by Se and Ce, where both display a distinctive Λ-shape profile as a function of ε. These thermodynamic quantities sharply increase up to ε = 5% in the magnetic regime, followed by a sudden drop at ε = 5.5%, transitioning to a linear dependence on ε in the nonmagnetic regime. This controllable magnetic-to-nonmagnetic switch offers potential applications in electronic nanodevices operating at finite temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信