Zachary E. Paikin, Benjamin Emenike, Rajendra Shirke, Christian Michel Beusch, David Ezra Gordon, Monika Raj
{"title":"丙烯醛介导的赖氨酸转化为亲电杂环的蛋白质多样化和毒性分析","authors":"Zachary E. Paikin, Benjamin Emenike, Rajendra Shirke, Christian Michel Beusch, David Ezra Gordon, Monika Raj","doi":"10.1021/jacs.4c12928","DOIUrl":null,"url":null,"abstract":"Understanding protein interactions in the presence of biological metabolites is critical for unraveling biological processes and advancing therapeutic interventions. This study focuses on α,β-unsaturated carbonyls, particularly acrolein-derived protein modifications, unveiling a one-pot, four-step, selective chemistry that results in the formation of a heterocyclic α,β-unsaturated carbonyl, termed 3-formyl-3,4-dehydropiperidino (FDP), exclusively on lysine residues. Remarkably, this chemistry transforms lysine, a nucleophile, into an electrophilic warhead. We demonstrate its versatility in late-stage peptide diversification, precision protein engineering, and homogeneous protein labeling with diverse payloads. Additionally, FDP-lysine smoothly transforms into another heterocycle, 3-methylpyridinium (3-MP) lysine via deoxygenation and aromatization in reagentless conditions. This transformation facilitates late-stage peptide functionalization and homogeneous engineering of proteins, with MP-lysine acting as a mass booster. Leveraging this chemistry, we discovered hyperreactive sites responsible for acrolein-induced modification through chemoproteomic profiling of FDP- and MP-modified proteins. Our findings revealed changes in protein–protein interactions mediated by FDP-modified proteins and uncovered ∼1548 novel cross-linking partners of an FDP-modified protein.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"39 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acrolein-Mediated Conversion of Lysine to Electrophilic Heterocycles for Protein Diversification and Toxicity Profiling\",\"authors\":\"Zachary E. Paikin, Benjamin Emenike, Rajendra Shirke, Christian Michel Beusch, David Ezra Gordon, Monika Raj\",\"doi\":\"10.1021/jacs.4c12928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding protein interactions in the presence of biological metabolites is critical for unraveling biological processes and advancing therapeutic interventions. This study focuses on α,β-unsaturated carbonyls, particularly acrolein-derived protein modifications, unveiling a one-pot, four-step, selective chemistry that results in the formation of a heterocyclic α,β-unsaturated carbonyl, termed 3-formyl-3,4-dehydropiperidino (FDP), exclusively on lysine residues. Remarkably, this chemistry transforms lysine, a nucleophile, into an electrophilic warhead. We demonstrate its versatility in late-stage peptide diversification, precision protein engineering, and homogeneous protein labeling with diverse payloads. Additionally, FDP-lysine smoothly transforms into another heterocycle, 3-methylpyridinium (3-MP) lysine via deoxygenation and aromatization in reagentless conditions. This transformation facilitates late-stage peptide functionalization and homogeneous engineering of proteins, with MP-lysine acting as a mass booster. Leveraging this chemistry, we discovered hyperreactive sites responsible for acrolein-induced modification through chemoproteomic profiling of FDP- and MP-modified proteins. Our findings revealed changes in protein–protein interactions mediated by FDP-modified proteins and uncovered ∼1548 novel cross-linking partners of an FDP-modified protein.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12928\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12928","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Acrolein-Mediated Conversion of Lysine to Electrophilic Heterocycles for Protein Diversification and Toxicity Profiling
Understanding protein interactions in the presence of biological metabolites is critical for unraveling biological processes and advancing therapeutic interventions. This study focuses on α,β-unsaturated carbonyls, particularly acrolein-derived protein modifications, unveiling a one-pot, four-step, selective chemistry that results in the formation of a heterocyclic α,β-unsaturated carbonyl, termed 3-formyl-3,4-dehydropiperidino (FDP), exclusively on lysine residues. Remarkably, this chemistry transforms lysine, a nucleophile, into an electrophilic warhead. We demonstrate its versatility in late-stage peptide diversification, precision protein engineering, and homogeneous protein labeling with diverse payloads. Additionally, FDP-lysine smoothly transforms into another heterocycle, 3-methylpyridinium (3-MP) lysine via deoxygenation and aromatization in reagentless conditions. This transformation facilitates late-stage peptide functionalization and homogeneous engineering of proteins, with MP-lysine acting as a mass booster. Leveraging this chemistry, we discovered hyperreactive sites responsible for acrolein-induced modification through chemoproteomic profiling of FDP- and MP-modified proteins. Our findings revealed changes in protein–protein interactions mediated by FDP-modified proteins and uncovered ∼1548 novel cross-linking partners of an FDP-modified protein.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.