精神分裂症、双相情感障碍和重度抑郁症的共病特征分类及深度学习算法。

IF 3 Q2 PSYCHIATRY
Xiangning Chen, Yimei Lu, Joan Manuel Cue, Mira V Han, Vishwajit L Nimgaonkar, Daniel R Weinberger, Shizhong Han, Zhongming Zhao, Jingchun Chen
{"title":"精神分裂症、双相情感障碍和重度抑郁症的共病特征分类及深度学习算法。","authors":"Xiangning Chen, Yimei Lu, Joan Manuel Cue, Mira V Han, Vishwajit L Nimgaonkar, Daniel R Weinberger, Shizhong Han, Zhongming Zhao, Jingchun Chen","doi":"10.1038/s41537-025-00564-7","DOIUrl":null,"url":null,"abstract":"<p><p>Many psychiatric disorders share genetic liabilities, but whether these shared liabilities can be utilized to classify and differentiate psychiatric disorders remains unclear. In this study, we use polygenic risk scores (PRSs) of 42 traits comorbid with schizophrenia (SCZ), bipolar disorder (BIP), and major depressive disorder (MDD) to evaluate their utilities. We found that combining target specific PRS with PRSs of comorbid traits can improve the classification of the target disorders. Importantly, without inclusion of PRSs from targeted disorders, we can still classify SCZ (accuracy 0.710 ± 0.008, AUC 0.789 ± 0.011), BIP (accuracy 0.782 ± 0.006, AUC 0.852 ± 0.004), and MDD (accuracy 0.753 ± 0.019, AUC 0.822 ± 0.010). Furthermore, PRSs from comorbid traits alone can effectively differentiate unaffected controls and patients with SCZ, BIP, and MDD (accuracy 0.861 ± 0.003, AUC 0.961 ± 0.041). Our results demonstrate that shared liabilities can be used effectively to improve the classification and differentiation of these disorders. The finding that PRSs from comorbid traits alone can classify and differentiate SCZ, BIP and MDD reasonably well implies that a majority of the risk variants composing target PRSs are shared with comorbid traits. Overall, our results suggest that a data-driven approach may be feasible to classify and differentiate these disorders.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"14"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of schizophrenia, bipolar disorder and major depressive disorder with comorbid traits and deep learning algorithms.\",\"authors\":\"Xiangning Chen, Yimei Lu, Joan Manuel Cue, Mira V Han, Vishwajit L Nimgaonkar, Daniel R Weinberger, Shizhong Han, Zhongming Zhao, Jingchun Chen\",\"doi\":\"10.1038/s41537-025-00564-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many psychiatric disorders share genetic liabilities, but whether these shared liabilities can be utilized to classify and differentiate psychiatric disorders remains unclear. In this study, we use polygenic risk scores (PRSs) of 42 traits comorbid with schizophrenia (SCZ), bipolar disorder (BIP), and major depressive disorder (MDD) to evaluate their utilities. We found that combining target specific PRS with PRSs of comorbid traits can improve the classification of the target disorders. Importantly, without inclusion of PRSs from targeted disorders, we can still classify SCZ (accuracy 0.710 ± 0.008, AUC 0.789 ± 0.011), BIP (accuracy 0.782 ± 0.006, AUC 0.852 ± 0.004), and MDD (accuracy 0.753 ± 0.019, AUC 0.822 ± 0.010). Furthermore, PRSs from comorbid traits alone can effectively differentiate unaffected controls and patients with SCZ, BIP, and MDD (accuracy 0.861 ± 0.003, AUC 0.961 ± 0.041). Our results demonstrate that shared liabilities can be used effectively to improve the classification and differentiation of these disorders. The finding that PRSs from comorbid traits alone can classify and differentiate SCZ, BIP and MDD reasonably well implies that a majority of the risk variants composing target PRSs are shared with comorbid traits. Overall, our results suggest that a data-driven approach may be feasible to classify and differentiate these disorders.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":\"11 1\",\"pages\":\"14\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-025-00564-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00564-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

许多精神疾病有共同的遗传责任,但这些共同的责任是否可以用来分类和区分精神疾病尚不清楚。在这项研究中,我们使用42个与精神分裂症(SCZ)、双相情感障碍(BIP)和重度抑郁症(MDD)共病的特征的多基因风险评分(PRSs)来评估它们的效用。我们发现将靶向特异性PRS与共病特征的PRS结合可以改善目标疾病的分类。重要的是,在不纳入目标疾病的PRSs的情况下,我们仍然可以对SCZ(准确度0.710±0.008,AUC 0.789±0.011),BIP(准确度0.782±0.006,AUC 0.852±0.004)和MDD(准确度0.753±0.019,AUC 0.822±0.010)进行分类。此外,仅从合并症特征判断的PRSs可有效区分未受影响的对照组与SCZ、BIP和MDD患者(准确率0.861±0.003,AUC 0.961±0.041)。我们的研究结果表明,共同责任可以有效地用于改善这些疾病的分类和区分。单独来自共病特征的PRSs可以很好地分类和区分SCZ、BIP和MDD,这一发现表明构成目标PRSs的大多数风险变异与共病特征共享。总的来说,我们的结果表明,数据驱动的方法可能是可行的分类和区分这些疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of schizophrenia, bipolar disorder and major depressive disorder with comorbid traits and deep learning algorithms.

Many psychiatric disorders share genetic liabilities, but whether these shared liabilities can be utilized to classify and differentiate psychiatric disorders remains unclear. In this study, we use polygenic risk scores (PRSs) of 42 traits comorbid with schizophrenia (SCZ), bipolar disorder (BIP), and major depressive disorder (MDD) to evaluate their utilities. We found that combining target specific PRS with PRSs of comorbid traits can improve the classification of the target disorders. Importantly, without inclusion of PRSs from targeted disorders, we can still classify SCZ (accuracy 0.710 ± 0.008, AUC 0.789 ± 0.011), BIP (accuracy 0.782 ± 0.006, AUC 0.852 ± 0.004), and MDD (accuracy 0.753 ± 0.019, AUC 0.822 ± 0.010). Furthermore, PRSs from comorbid traits alone can effectively differentiate unaffected controls and patients with SCZ, BIP, and MDD (accuracy 0.861 ± 0.003, AUC 0.961 ± 0.041). Our results demonstrate that shared liabilities can be used effectively to improve the classification and differentiation of these disorders. The finding that PRSs from comorbid traits alone can classify and differentiate SCZ, BIP and MDD reasonably well implies that a majority of the risk variants composing target PRSs are shared with comorbid traits. Overall, our results suggest that a data-driven approach may be feasible to classify and differentiate these disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信