通过控制顺序糖基转移酶反应在大肠杆菌中有效发酵生产乳二糖四糖。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shu Moriyama, Tomotoshi Sugita, Makoto Yamashita
{"title":"通过控制顺序糖基转移酶反应在大肠杆菌中有效发酵生产乳二糖四糖。","authors":"Shu Moriyama, Tomotoshi Sugita, Makoto Yamashita","doi":"10.1002/btpr.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Lactodifucotetraose (LDFT) is a human milk oligosaccharide (HMO) that might reduce inflammation in infants. In this study, we established a useful production process of LDFT by engineering two key enzymes, α1,2-fucosyltransferase (α1,2-FucT) and α1,3-fucosyltransferase (α1,3-FucT). First, we verified which of 2'-fucosyllactose (2'-FL) or 3-fucosyllactose (3-FL) (mostly unverified) was more useful. We searched for FucTs that functioned efficiently in vivo against the raw material lactose or the two intermediates 2'-FL or 3-FL by external substrate addition to culture medium. We found that α1,2- FucT (HMFT) from Helicobacter mustelae and the N-terminal truncated form of α1,3-FucT from Bacteroides fragilis (BfFucTΔN10) had high potential. 3-FL was not efficiently converted to LDFT, which might be attributed to the low reactivity of HMFT to 3-FL as well as the low uptake efficiency of 3-FL by LacY, as revealed by a growth test with exogenously added FL as the sole carbon source and heterologously expressed intracellular fucosidase. Furthermore, because 3-FL accumulation had a negative impact on cell growth, we avoided the route passing through 3-FL. By adjusting the copy numbers of HMFT and BffucTΔN10, we produced LDFT from lactose predominantly via 2'-FL. Finally, 17.5 g/L of LDFT (with 6.8 g/L 2'-FL and no 3-FL or residual lactose) accumulated in a 3-L fed-batch culture after 77 h. This study reports the detailed analysis of multiple pathways and shows the control of glycosyltransferases can improve the production efficiency of complex HMOs.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70010"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient fermentative production of lactodifucotetraose by controlling sequential glycosyltransferase reactions in Escherichia coli.\",\"authors\":\"Shu Moriyama, Tomotoshi Sugita, Makoto Yamashita\",\"doi\":\"10.1002/btpr.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lactodifucotetraose (LDFT) is a human milk oligosaccharide (HMO) that might reduce inflammation in infants. In this study, we established a useful production process of LDFT by engineering two key enzymes, α1,2-fucosyltransferase (α1,2-FucT) and α1,3-fucosyltransferase (α1,3-FucT). First, we verified which of 2'-fucosyllactose (2'-FL) or 3-fucosyllactose (3-FL) (mostly unverified) was more useful. We searched for FucTs that functioned efficiently in vivo against the raw material lactose or the two intermediates 2'-FL or 3-FL by external substrate addition to culture medium. We found that α1,2- FucT (HMFT) from Helicobacter mustelae and the N-terminal truncated form of α1,3-FucT from Bacteroides fragilis (BfFucTΔN10) had high potential. 3-FL was not efficiently converted to LDFT, which might be attributed to the low reactivity of HMFT to 3-FL as well as the low uptake efficiency of 3-FL by LacY, as revealed by a growth test with exogenously added FL as the sole carbon source and heterologously expressed intracellular fucosidase. Furthermore, because 3-FL accumulation had a negative impact on cell growth, we avoided the route passing through 3-FL. By adjusting the copy numbers of HMFT and BffucTΔN10, we produced LDFT from lactose predominantly via 2'-FL. Finally, 17.5 g/L of LDFT (with 6.8 g/L 2'-FL and no 3-FL or residual lactose) accumulated in a 3-L fed-batch culture after 77 h. This study reports the detailed analysis of multiple pathways and shows the control of glycosyltransferases can improve the production efficiency of complex HMOs.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e70010\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.70010\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳二糖四糖(LDFT)是一种人乳低聚糖(HMO),可以减轻婴儿的炎症。本研究通过对α1,2- focusyltransferase (α1,2- fuct)和α1,3- focusyltransferase (α1,3- fuct)这两个关键酶进行工程改造,建立了一种有效的LDFT生产工艺。首先,我们验证了2'- focusyllactose (2'- fl)和3- focusyllactose (3- fl)(大部分未经验证)哪个更有用。我们通过在培养基中添加外源底物,寻找在体内对原料乳糖或2′-FL或3′-FL两种中间体有效起作用的FucTs。我们发现来自mustelae Helicobacter的α1,2- FucT (HMFT)和来自Bacteroides fragilis (BfFucTΔN10)的α1,3-FucT的n端截断形式具有很高的潜力。3-FL不能有效地转化为LDFT,这可能是由于HMFT对3-FL的反应性较低,以及LacY对3-FL的吸收效率较低,这是外源添加FL作为唯一碳源并异种表达细胞内聚焦酶的生长试验所揭示的。此外,由于3-FL积累对细胞生长有负面影响,我们避免了通过3-FL的途径。通过调整HMFT和BffucTΔN10的拷贝数,我们主要通过2'-FL从乳糖中产生LDFT。最后,在3-L补料分批培养77 h后,LDFT积累了17.5 g/L(含6.8 g/L 2′-FL,无3′-FL或残留乳糖)。本研究报道了多种途径的详细分析,表明糖基转移酶的控制可以提高复合HMOs的生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient fermentative production of lactodifucotetraose by controlling sequential glycosyltransferase reactions in Escherichia coli.

Lactodifucotetraose (LDFT) is a human milk oligosaccharide (HMO) that might reduce inflammation in infants. In this study, we established a useful production process of LDFT by engineering two key enzymes, α1,2-fucosyltransferase (α1,2-FucT) and α1,3-fucosyltransferase (α1,3-FucT). First, we verified which of 2'-fucosyllactose (2'-FL) or 3-fucosyllactose (3-FL) (mostly unverified) was more useful. We searched for FucTs that functioned efficiently in vivo against the raw material lactose or the two intermediates 2'-FL or 3-FL by external substrate addition to culture medium. We found that α1,2- FucT (HMFT) from Helicobacter mustelae and the N-terminal truncated form of α1,3-FucT from Bacteroides fragilis (BfFucTΔN10) had high potential. 3-FL was not efficiently converted to LDFT, which might be attributed to the low reactivity of HMFT to 3-FL as well as the low uptake efficiency of 3-FL by LacY, as revealed by a growth test with exogenously added FL as the sole carbon source and heterologously expressed intracellular fucosidase. Furthermore, because 3-FL accumulation had a negative impact on cell growth, we avoided the route passing through 3-FL. By adjusting the copy numbers of HMFT and BffucTΔN10, we produced LDFT from lactose predominantly via 2'-FL. Finally, 17.5 g/L of LDFT (with 6.8 g/L 2'-FL and no 3-FL or residual lactose) accumulated in a 3-L fed-batch culture after 77 h. This study reports the detailed analysis of multiple pathways and shows the control of glycosyltransferases can improve the production efficiency of complex HMOs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信