氧化应激对腺苷A2A受体活性及信号传导的影响。

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Idoia Company-Marín , Joseph Gunner , David Poyner , John Simms , Andrew R. Pitt , Corinne M. Spickett
{"title":"氧化应激对腺苷A2A受体活性及信号传导的影响。","authors":"Idoia Company-Marín ,&nbsp;Joseph Gunner ,&nbsp;David Poyner ,&nbsp;John Simms ,&nbsp;Andrew R. Pitt ,&nbsp;Corinne M. Spickett","doi":"10.1016/j.bbamem.2025.184412","DOIUrl":null,"url":null,"abstract":"<div><div>The adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) is a G-protein coupled receptor that has important anti-inflammatory effects in response to some agonists and consequently is considered a therapeutic target. Its activity is affected by local membrane lipid environment and presence of certain phospholipid classes, so studies should be conducted using extraction methods such as styrene maleic acid <em>co</em>-polymers (SMA) that retain the local lipids. Currently, little is known about the effect of oxidative stress, which may arise from inflammation, on the A<sub>2A</sub>R. Therefore, it was over-expressed in <em>Pichia pastoris</em>, SMA was used to extract the A<sub>2A</sub>R from cell membranes and its response to ligands was tested in the presence or absence of the radical initiator AAPH or reactive aldehyde acrolein. SMA-extracted A<sub>2A</sub>R was able to undergo conformational changes, measured by tryptophan fluorescence, in response to its ligands but oxidative treatments had no effect on the structural changes. Similarly, the treatments did not affect temperature-dependent protein unfolding. In contrast, in HEK293 cells expressing the A<sub>2A</sub>R, oxidative treatments increased cAMP levels in response to the agonist NECA but had no effect on direct activation of adenylate cyclase. Thus, oxidative stress may be a homeostatic mechanism that abrogates inflammation via the A<sub>2A</sub>R signalling pathway.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 3","pages":"Article 184412"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of oxidative stress on the adenosine A2A receptor activity and signalling\",\"authors\":\"Idoia Company-Marín ,&nbsp;Joseph Gunner ,&nbsp;David Poyner ,&nbsp;John Simms ,&nbsp;Andrew R. Pitt ,&nbsp;Corinne M. Spickett\",\"doi\":\"10.1016/j.bbamem.2025.184412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) is a G-protein coupled receptor that has important anti-inflammatory effects in response to some agonists and consequently is considered a therapeutic target. Its activity is affected by local membrane lipid environment and presence of certain phospholipid classes, so studies should be conducted using extraction methods such as styrene maleic acid <em>co</em>-polymers (SMA) that retain the local lipids. Currently, little is known about the effect of oxidative stress, which may arise from inflammation, on the A<sub>2A</sub>R. Therefore, it was over-expressed in <em>Pichia pastoris</em>, SMA was used to extract the A<sub>2A</sub>R from cell membranes and its response to ligands was tested in the presence or absence of the radical initiator AAPH or reactive aldehyde acrolein. SMA-extracted A<sub>2A</sub>R was able to undergo conformational changes, measured by tryptophan fluorescence, in response to its ligands but oxidative treatments had no effect on the structural changes. Similarly, the treatments did not affect temperature-dependent protein unfolding. In contrast, in HEK293 cells expressing the A<sub>2A</sub>R, oxidative treatments increased cAMP levels in response to the agonist NECA but had no effect on direct activation of adenylate cyclase. Thus, oxidative stress may be a homeostatic mechanism that abrogates inflammation via the A<sub>2A</sub>R signalling pathway.</div></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1867 3\",\"pages\":\"Article 184412\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273625000069\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000069","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

腺苷A2A受体(A2AR)是一种g蛋白偶联受体,对某些激动剂具有重要的抗炎作用,因此被认为是一种治疗靶点。其活性受局部膜脂环境和某些磷脂类存在的影响,因此研究应使用提取方法,如苯乙烯马来酸共聚物(SMA),保留局部脂质。目前,关于氧化应激(可能由炎症引起)对A2AR的影响知之甚少。因此,它在毕赤酵母中过表达,我们使用SMA从细胞膜中提取A2AR,并在存在或不存在自由基引发剂AAPH或活性醛丙烯醛的情况下测试其对配体的反应。通过色氨酸荧光测量,sma提取的A2AR能够响应其配体发生构象变化,但氧化处理对结构变化没有影响。同样,这些处理也不影响温度依赖性蛋白的展开。相比之下,在表达A2AR的HEK293细胞中,氧化处理增加了cAMP水平,以响应激动剂NECA,但对腺苷酸环化酶的直接激活没有影响。因此,氧化应激可能是一种通过A2AR信号通路消除炎症的稳态机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of oxidative stress on the adenosine A2A receptor activity and signalling

The effect of oxidative stress on the adenosine A2A receptor activity and signalling
The adenosine A2A receptor (A2AR) is a G-protein coupled receptor that has important anti-inflammatory effects in response to some agonists and consequently is considered a therapeutic target. Its activity is affected by local membrane lipid environment and presence of certain phospholipid classes, so studies should be conducted using extraction methods such as styrene maleic acid co-polymers (SMA) that retain the local lipids. Currently, little is known about the effect of oxidative stress, which may arise from inflammation, on the A2AR. Therefore, it was over-expressed in Pichia pastoris, SMA was used to extract the A2AR from cell membranes and its response to ligands was tested in the presence or absence of the radical initiator AAPH or reactive aldehyde acrolein. SMA-extracted A2AR was able to undergo conformational changes, measured by tryptophan fluorescence, in response to its ligands but oxidative treatments had no effect on the structural changes. Similarly, the treatments did not affect temperature-dependent protein unfolding. In contrast, in HEK293 cells expressing the A2AR, oxidative treatments increased cAMP levels in response to the agonist NECA but had no effect on direct activation of adenylate cyclase. Thus, oxidative stress may be a homeostatic mechanism that abrogates inflammation via the A2AR signalling pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信