心肾综合征:临床诊断、分子机制和治疗策略。

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Acta Pharmacologica Sinica Pub Date : 2025-06-01 Epub Date: 2025-02-05 DOI:10.1038/s41401-025-01476-z
Bo-Rui Zhao, Xin-Rong Hu, Wei-Dong Wang, Yi Zhou
{"title":"心肾综合征:临床诊断、分子机制和治疗策略。","authors":"Bo-Rui Zhao, Xin-Rong Hu, Wei-Dong Wang, Yi Zhou","doi":"10.1038/s41401-025-01476-z","DOIUrl":null,"url":null,"abstract":"<p><p>As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1539-1555"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies.\",\"authors\":\"Bo-Rui Zhao, Xin-Rong Hu, Wei-Dong Wang, Yi Zhou\",\"doi\":\"10.1038/s41401-025-01476-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"1539-1555\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01476-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01476-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于心脏和肾脏通过循环系统紧密相连,任何一个器官的原发性功能障碍通常会导致另一个器官的继发性功能障碍或损伤。这些相互作用在一种名为心肾综合征(CRS)的临床实体的发病机制中起主要作用。CRS的病理生理机制复杂,涉及多个身体系统。在早期研究中,根据与CRS恶性循环相关的脏器以及CRS的急性和慢性程度,将CRS分为5个亚型。越来越多的证据表明,CRS与多种病理机制有关,如血流动力学、神经激素改变、高血容量、高血压、高尿酸血症和高尿酸血症。本文就CRS的分类及目前可用的诊断生物标志物进行综述。我们强调了最近发现的CRS的分子发病机制,如氧化应激和炎症,肾素-血管紧张素-醛固酮系统亢进,Wnt/β-catenin信号通路和促纤维化TGF -β1 /Smad信号通路的不适应,以及其他致病机制,如肠道微生物群失调和非编码rna的失调。靶向这些CRS相关信号通路具有治疗CRS的新潜力。此外,各种化学药物、天然产物、补充疗法、阻滞剂和激动剂对CRS的保护进行了总结。由于CRS的分子机制尚不清楚,没有单一的干预措施被证明能有效治疗CRS。目前迫切需要阻断CRS的药物治疗。本文综述了针对CRS的关键治疗途径,同时阐明了发现CRS新治疗策略的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies.

As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信