多优化目标下基于深度强化学习的移动机器人在线参数自适应控制

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiuli Sui, Haiyong Chen
{"title":"多优化目标下基于深度强化学习的移动机器人在线参数自适应控制","authors":"Xiuli Sui,&nbsp;Haiyong Chen","doi":"10.1049/ccs2.12105","DOIUrl":null,"url":null,"abstract":"<p>Fixed control parameters and various optimisation objectives significantly limit the robot control performance. To address such issues, a parameter adaptive controller based on deep reinforcement learning is introduced firstly to adjust control parameters according to the real-time system state. Further, multiple evaluation mechanisms are constructed to take account of optimisation objectives so that the controller can adapt to different control performance indexes by different evaluation mechanisms. Finally, the target pedestrian tracking control with mobile robots is selected as the validation case study, and the Proportional-Derivative Controller is chosen as the foundation controller. Several simulation and experimental examples are designed, and the results demonstrate that the proposed method shows satisfactory performance while taking account of multiple optimisation objectives.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"6 4","pages":"86-97"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12105","citationCount":"0","resultStr":"{\"title\":\"Online parameter adaptive control of mobile robots based on deep reinforcement learning under multiple optimisation objectives\",\"authors\":\"Xiuli Sui,&nbsp;Haiyong Chen\",\"doi\":\"10.1049/ccs2.12105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fixed control parameters and various optimisation objectives significantly limit the robot control performance. To address such issues, a parameter adaptive controller based on deep reinforcement learning is introduced firstly to adjust control parameters according to the real-time system state. Further, multiple evaluation mechanisms are constructed to take account of optimisation objectives so that the controller can adapt to different control performance indexes by different evaluation mechanisms. Finally, the target pedestrian tracking control with mobile robots is selected as the validation case study, and the Proportional-Derivative Controller is chosen as the foundation controller. Several simulation and experimental examples are designed, and the results demonstrate that the proposed method shows satisfactory performance while taking account of multiple optimisation objectives.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"6 4\",\"pages\":\"86-97\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

固定的控制参数和各种优化目标严重限制了机器人的控制性能。针对这一问题,首先引入了一种基于深度强化学习的参数自适应控制器,根据系统的实时状态调整控制参数。进一步,考虑优化目标,构建了多种评价机制,使控制器能够通过不同的评价机制适应不同的控制性能指标。最后,选择移动机器人的目标行人跟踪控制作为验证案例研究,选择比例导数控制器作为基础控制器。设计了几个仿真和实验实例,结果表明,该方法在考虑多个优化目标的情况下具有令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Online parameter adaptive control of mobile robots based on deep reinforcement learning under multiple optimisation objectives

Online parameter adaptive control of mobile robots based on deep reinforcement learning under multiple optimisation objectives

Fixed control parameters and various optimisation objectives significantly limit the robot control performance. To address such issues, a parameter adaptive controller based on deep reinforcement learning is introduced firstly to adjust control parameters according to the real-time system state. Further, multiple evaluation mechanisms are constructed to take account of optimisation objectives so that the controller can adapt to different control performance indexes by different evaluation mechanisms. Finally, the target pedestrian tracking control with mobile robots is selected as the validation case study, and the Proportional-Derivative Controller is chosen as the foundation controller. Several simulation and experimental examples are designed, and the results demonstrate that the proposed method shows satisfactory performance while taking account of multiple optimisation objectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信