基于Gibbs后验推理的尾部相关回归框架表征美国北部落基山脉卫星降水产品与台站资料的渐近相关性

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-11-24 DOI:10.1002/env.2890
Brook T. Russell, Yiren Ding, Whitney K. Huang, Jamie L. Dyer
{"title":"基于Gibbs后验推理的尾部相关回归框架表征美国北部落基山脉卫星降水产品与台站资料的渐近相关性","authors":"Brook T. Russell,&nbsp;Yiren Ding,&nbsp;Whitney K. Huang,&nbsp;Jamie L. Dyer","doi":"10.1002/env.2890","DOIUrl":null,"url":null,"abstract":"<p>The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks-climate data record (PERSIANN-CDR) to capture daily precipitation extremes by comparing PERSIANN-CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN-CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN-CDR output, yields an increased level of asymptotic dependence with station data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2890","citationCount":"0","resultStr":"{\"title\":\"Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach\",\"authors\":\"Brook T. Russell,&nbsp;Yiren Ding,&nbsp;Whitney K. Huang,&nbsp;Jamie L. Dyer\",\"doi\":\"10.1002/env.2890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks-climate data record (PERSIANN-CDR) to capture daily precipitation extremes by comparing PERSIANN-CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN-CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN-CDR output, yields an increased level of asymptotic dependence with station data.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2890\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2890\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2890","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用卫星降水产品(SPP)可以收集几乎全球的降水信息,但是它们重现山区极端降水的能力仍然存在问题。在这项工作中,我们通过比较PERSIANN-CDR与美国北部落基山脉(怀俄明州、爱达荷州和蒙大拿州)偏远地区夏季相应的气象站数据,评估了利用人工神经网络气候数据记录(PERSIANN-CDR)从遥感信息中估计降水的能力,以捕获日极端降水。利用极值理论的正则变化框架进行评估,包括两个部分:(1)通过对渐近依赖参数的推断,评估了persann - cdr对降水极端值的捕获程度,得出渐近依赖在整个区域的水平是中等的;(2)建立了尾相关回归模型框架和Gibbs后验推理方法,以研究海拔和地形异质性对渐近依赖程度的影响程度,发现包含一组气象协变量与persann - cdr输出相结合时,与站数据的渐近依赖程度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach

Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach

The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks-climate data record (PERSIANN-CDR) to capture daily precipitation extremes by comparing PERSIANN-CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN-CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN-CDR output, yields an increased level of asymptotic dependence with station data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信