基于卷积神经网络的高温钛合金蠕变断裂寿命预测

Bangtan Zong, Jinshan Li, Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan
{"title":"基于卷积神经网络的高温钛合金蠕变断裂寿命预测","authors":"Bangtan Zong,&nbsp;Jinshan Li,&nbsp;Changlu Zhou,&nbsp;Ping Wang,&nbsp;Bin Tang,&nbsp;Ruihao Yuan","doi":"10.1002/mgea.68","DOIUrl":null,"url":null,"abstract":"<p>Prediction of creep rupture life of high-temperature titanium alloys is crucial for their practical applications. The efficient representations (features) of the information encoded in the data are essential to achieve an accurate prediction model. Here, using convolutional neural networks (CNN) enhanced features, we obtain largely improved prediction models for creep rupture life. Comparison of CNN-based features with the original features in describing different samples reveals that the former, by assigning more individualized labels, outperforms the latter and underpins improved prediction models. This work suggests that beyond images, CNN is also suitable for numerical data to obtain enhanced features and surrogate models.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.68","citationCount":"0","resultStr":"{\"title\":\"Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks\",\"authors\":\"Bangtan Zong,&nbsp;Jinshan Li,&nbsp;Changlu Zhou,&nbsp;Ping Wang,&nbsp;Bin Tang,&nbsp;Ruihao Yuan\",\"doi\":\"10.1002/mgea.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prediction of creep rupture life of high-temperature titanium alloys is crucial for their practical applications. The efficient representations (features) of the information encoded in the data are essential to achieve an accurate prediction model. Here, using convolutional neural networks (CNN) enhanced features, we obtain largely improved prediction models for creep rupture life. Comparison of CNN-based features with the original features in describing different samples reveals that the former, by assigning more individualized labels, outperforms the latter and underpins improved prediction models. This work suggests that beyond images, CNN is also suitable for numerical data to obtain enhanced features and surrogate models.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.68\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高温钛合金蠕变断裂寿命的预测对其实际应用具有重要意义。数据中编码信息的有效表示(特征)对于实现准确的预测模型至关重要。在这里,使用卷积神经网络(CNN)增强的特征,我们获得了很大程度上改进的蠕变断裂寿命预测模型。将基于cnn的特征与原始特征在描述不同样本时的比较表明,前者通过分配更个性化的标签,优于后者,并为改进的预测模型提供了基础。这项工作表明,除了图像,CNN也适用于数值数据,以获得增强的特征和代理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks

Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks

Prediction of creep rupture life of high-temperature titanium alloys is crucial for their practical applications. The efficient representations (features) of the information encoded in the data are essential to achieve an accurate prediction model. Here, using convolutional neural networks (CNN) enhanced features, we obtain largely improved prediction models for creep rupture life. Comparison of CNN-based features with the original features in describing different samples reveals that the former, by assigning more individualized labels, outperforms the latter and underpins improved prediction models. This work suggests that beyond images, CNN is also suitable for numerical data to obtain enhanced features and surrogate models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信