量子通信中最优状态判别的最大-最小算法

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY
Neel Kanth Kundu, Prabhu Babu, Petre Stoica
{"title":"量子通信中最优状态判别的最大-最小算法","authors":"Neel Kanth Kundu,&nbsp;Prabhu Babu,&nbsp;Petre Stoica","doi":"10.1049/qtc2.12107","DOIUrl":null,"url":null,"abstract":"<p>Designing optimal measurement operators for quantum state discrimination (QSD) is an important problem in quantum communications and cryptography applications. Prior works have demonstrated that optimal quantum measurement operators can be obtained by solving a convex semidefinite program (SDP). However, solving the SDP can represent a high computational burden for many real-time quantum communication systems. To address this issue, a majorisation-minimisation (MM)-based algorithm, called Quantum Majorisation-Minimisation (QMM) is proposed for solving the QSD problem. In QMM, the authors reparametrise the original objective, then tightly upper-bound it at any given iterate, and obtain the next iterate as a closed-form solution to the upper-bound minimisation problem. Our numerical simulations demonstrate that the proposed QMM algorithm significantly outperforms the state-of-the-art SDP algorithm in terms of speed, while maintaining comparable performance for solving QSD problems in quantum communication applications.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"612-618"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12107","citationCount":"0","resultStr":"{\"title\":\"Majorisation-minimisation algorithm for optimal state discrimination in quantum communications\",\"authors\":\"Neel Kanth Kundu,&nbsp;Prabhu Babu,&nbsp;Petre Stoica\",\"doi\":\"10.1049/qtc2.12107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing optimal measurement operators for quantum state discrimination (QSD) is an important problem in quantum communications and cryptography applications. Prior works have demonstrated that optimal quantum measurement operators can be obtained by solving a convex semidefinite program (SDP). However, solving the SDP can represent a high computational burden for many real-time quantum communication systems. To address this issue, a majorisation-minimisation (MM)-based algorithm, called Quantum Majorisation-Minimisation (QMM) is proposed for solving the QSD problem. In QMM, the authors reparametrise the original objective, then tightly upper-bound it at any given iterate, and obtain the next iterate as a closed-form solution to the upper-bound minimisation problem. Our numerical simulations demonstrate that the proposed QMM algorithm significantly outperforms the state-of-the-art SDP algorithm in terms of speed, while maintaining comparable performance for solving QSD problems in quantum communication applications.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"5 4\",\"pages\":\"612-618\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

设计量子态判别(QSD)的最佳测量算子是量子通信和密码应用中的一个重要问题。先前的研究表明,最优量子测量算子可以通过求解凸半定规划(SDP)得到。然而,对于许多实时量子通信系统来说,求解SDP可能会带来很高的计算负担。为了解决这个问题,提出了一种基于多数最小化(MM)的算法,称为量子多数最小化(QMM)来解决QSD问题。在QMM中,作者将原目标重新参数化,然后在任意给定的迭代点将其严密上界,并作为上界最小化问题的封闭解获得下一个迭代。我们的数值模拟表明,所提出的QMM算法在速度方面明显优于最先进的SDP算法,同时在量子通信应用中解决QSD问题时保持相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Majorisation-minimisation algorithm for optimal state discrimination in quantum communications

Majorisation-minimisation algorithm for optimal state discrimination in quantum communications

Designing optimal measurement operators for quantum state discrimination (QSD) is an important problem in quantum communications and cryptography applications. Prior works have demonstrated that optimal quantum measurement operators can be obtained by solving a convex semidefinite program (SDP). However, solving the SDP can represent a high computational burden for many real-time quantum communication systems. To address this issue, a majorisation-minimisation (MM)-based algorithm, called Quantum Majorisation-Minimisation (QMM) is proposed for solving the QSD problem. In QMM, the authors reparametrise the original objective, then tightly upper-bound it at any given iterate, and obtain the next iterate as a closed-form solution to the upper-bound minimisation problem. Our numerical simulations demonstrate that the proposed QMM algorithm significantly outperforms the state-of-the-art SDP algorithm in terms of speed, while maintaining comparable performance for solving QSD problems in quantum communication applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信