基于生成对抗网络和自动机器学习的聚合物玻璃化转变温度预测

Zhanjie Liu, Yixuan Huo, Qionghai Chen, Siqi Zhan, Qian Li, Qingsong Zhao, Lihong Cui, Jun Liu
{"title":"基于生成对抗网络和自动机器学习的聚合物玻璃化转变温度预测","authors":"Zhanjie Liu,&nbsp;Yixuan Huo,&nbsp;Qionghai Chen,&nbsp;Siqi Zhan,&nbsp;Qian Li,&nbsp;Qingsong Zhao,&nbsp;Lihong Cui,&nbsp;Jun Liu","doi":"10.1002/mgea.78","DOIUrl":null,"url":null,"abstract":"<p>Solution styrene-butadiene rubber (SSBR) finds wide applications in high performance tire design and various other fields. This study aims to create a quantitative structure–property relationship (QSPR) model linking SSBR's glass transition temperature (<i>T</i><sub><i>g</i></sub>) to its structural properties. A dataset of 68 sets of data from published literature was compiled to develop a predictive machine learning model for SSBR's structural design and synthesis using small sample sizes. To tackle small sample sizes, a framework combining generative adversarial networks (GAN) and the Tree-based Pipeline Optimization Tool (TPOT) is proposed. GAN is first used to generate additional samples that mirror the original dataset's distribution, expanding the dataset. The TPOT is then applied to automatically find the best model and parameter combinations, creating an optimal predictive model for the mixed dataset. Experimental results show that using GAN to enlarge the dataset and TPOT regression models significantly enhances model performance, increasing the <i>R</i><sup>2</sup> value from 0.745 to 0.985 and decreasing the RMSE from 7.676 to 1.569. The proposed GAN–TPOT framework demonstrates the potential of combining generative models with automated machine learning to improve materials science research. This combination accelerates research and development processes, enhances prediction and design accuracy, and introduces new perspectives and possibilities for the field.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.78","citationCount":"0","resultStr":"{\"title\":\"Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning\",\"authors\":\"Zhanjie Liu,&nbsp;Yixuan Huo,&nbsp;Qionghai Chen,&nbsp;Siqi Zhan,&nbsp;Qian Li,&nbsp;Qingsong Zhao,&nbsp;Lihong Cui,&nbsp;Jun Liu\",\"doi\":\"10.1002/mgea.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solution styrene-butadiene rubber (SSBR) finds wide applications in high performance tire design and various other fields. This study aims to create a quantitative structure–property relationship (QSPR) model linking SSBR's glass transition temperature (<i>T</i><sub><i>g</i></sub>) to its structural properties. A dataset of 68 sets of data from published literature was compiled to develop a predictive machine learning model for SSBR's structural design and synthesis using small sample sizes. To tackle small sample sizes, a framework combining generative adversarial networks (GAN) and the Tree-based Pipeline Optimization Tool (TPOT) is proposed. GAN is first used to generate additional samples that mirror the original dataset's distribution, expanding the dataset. The TPOT is then applied to automatically find the best model and parameter combinations, creating an optimal predictive model for the mixed dataset. Experimental results show that using GAN to enlarge the dataset and TPOT regression models significantly enhances model performance, increasing the <i>R</i><sup>2</sup> value from 0.745 to 0.985 and decreasing the RMSE from 7.676 to 1.569. The proposed GAN–TPOT framework demonstrates the potential of combining generative models with automated machine learning to improve materials science research. This combination accelerates research and development processes, enhances prediction and design accuracy, and introduces new perspectives and possibilities for the field.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.78\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

溶液丁苯橡胶(SSBR)在高性能轮胎设计和其他各个领域有着广泛的应用。本研究旨在建立一个定量的结构-性能关系(QSPR)模型,将SSBR的玻璃化转变温度(Tg)与其结构性能联系起来。从已发表的文献中收集了68组数据集,利用小样本量开发了用于SSBR结构设计和合成的预测机器学习模型。为了解决小样本问题,提出了一种结合生成对抗网络(GAN)和基于树的管道优化工具(TPOT)的框架。GAN首先用于生成反映原始数据集分布的额外样本,扩展数据集。然后应用TPOT自动寻找最佳模型和参数组合,为混合数据集创建最优预测模型。实验结果表明,使用GAN扩大数据集和TPOT回归模型显著提高了模型性能,将R2值从0.745提高到0.985,将RMSE从7.676降低到1.569。提出的GAN-TPOT框架展示了将生成模型与自动化机器学习相结合以改善材料科学研究的潜力。这种结合加速了研究和开发过程,提高了预测和设计的准确性,并为该领域引入了新的视角和可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning

Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning

Solution styrene-butadiene rubber (SSBR) finds wide applications in high performance tire design and various other fields. This study aims to create a quantitative structure–property relationship (QSPR) model linking SSBR's glass transition temperature (Tg) to its structural properties. A dataset of 68 sets of data from published literature was compiled to develop a predictive machine learning model for SSBR's structural design and synthesis using small sample sizes. To tackle small sample sizes, a framework combining generative adversarial networks (GAN) and the Tree-based Pipeline Optimization Tool (TPOT) is proposed. GAN is first used to generate additional samples that mirror the original dataset's distribution, expanding the dataset. The TPOT is then applied to automatically find the best model and parameter combinations, creating an optimal predictive model for the mixed dataset. Experimental results show that using GAN to enlarge the dataset and TPOT regression models significantly enhances model performance, increasing the R2 value from 0.745 to 0.985 and decreasing the RMSE from 7.676 to 1.569. The proposed GAN–TPOT framework demonstrates the potential of combining generative models with automated machine learning to improve materials science research. This combination accelerates research and development processes, enhances prediction and design accuracy, and introduces new perspectives and possibilities for the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信