{"title":"具有自适应注意力的高效变压器跟踪","authors":"Dingkun Xiao, Zhenzhong Wei, Guangjun Zhang","doi":"10.1049/cvi2.12315","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.</p>\n </section>\n </div>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1338-1350"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12315","citationCount":"0","resultStr":"{\"title\":\"Efficient transformer tracking with adaptive attention\",\"authors\":\"Dingkun Xiao, Zhenzhong Wei, Guangjun Zhang\",\"doi\":\"10.1049/cvi2.12315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.</p>\\n </section>\\n </div>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 8\",\"pages\":\"1338-1350\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12315\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12315","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient transformer tracking with adaptive attention
Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf