具有自适应注意力的高效变压器跟踪

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dingkun Xiao, Zhenzhong Wei, Guangjun Zhang
{"title":"具有自适应注意力的高效变压器跟踪","authors":"Dingkun Xiao,&nbsp;Zhenzhong Wei,&nbsp;Guangjun Zhang","doi":"10.1049/cvi2.12315","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.</p>\n </section>\n </div>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1338-1350"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12315","citationCount":"0","resultStr":"{\"title\":\"Efficient transformer tracking with adaptive attention\",\"authors\":\"Dingkun Xiao,&nbsp;Zhenzhong Wei,&nbsp;Guangjun Zhang\",\"doi\":\"10.1049/cvi2.12315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.</p>\\n </section>\\n </div>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 8\",\"pages\":\"1338-1350\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12315\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12315","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,一些使用Transformer架构的跟踪器显示出显著的性能改进。然而,作为Transformer的核心组件,多头注意力的高计算成本限制了实时运行速度,而实时运行速度对于跟踪任务至关重要。此外,多头注意的全局机制使其容易受到与目标具有相似语义信息的干扰物的影响。为了解决这些问题,作者提出了一种新的自适应注意,该注意通过空间稀疏注意机制增强特征,其计算复杂度低于多头注意的1/4。我们的自适应注意力基于先前跟踪结果中的目标尺度,在特征映射中每个元素周围设置感知范围,并自适应搜索感兴趣的信息。这使得模块可以专注于目标区域,而不是背景干扰物。基于自适应注意力,构建了一个高效的变压器跟踪框架。它可以通过搜索特征和模板特征之间的深度交互来激活目标信息,并聚合多层次的交互特征来增强表征能力。在7个基准测试上的评估结果表明,作者的跟踪器取得了出色的性能,速度达到43 fps,在困难环境下具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient transformer tracking with adaptive attention

Efficient transformer tracking with adaptive attention

Recently, several trackers utilising Transformer architecture have shown significant performance improvement. However, the high computational cost of multi-head attention, a core component in the Transformer, has limited real-time running speed, which is crucial for tracking tasks. Additionally, the global mechanism of multi-head attention makes it susceptible to distractors with similar semantic information to the target. To address these issues, the authors propose a novel adaptive attention that enhances features through the spatial sparse attention mechanism with less than 1/4 of the computational complexity of multi-head attention. Our adaptive attention sets a perception range around each element in the feature map based on the target scale in the previous tracking result and adaptively searches for the information of interest. This allows the module to focus on the target region rather than background distractors. Based on adaptive attention, the authors build an efficient transformer tracking framework. It can perform deep interaction between search and template features to activate target information and aggregate multi-level interaction features to enhance the representation ability. The evaluation results on seven benchmarks show that the authors’ tracker achieves outstanding performance with a speed of 43 fps and significant advantages in hard circumstances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信