Ruchuan Ou , Jonas Schießl , Michael Heinrich Baumann , Lars Grüne , Timm Faulwasser
{"title":"A polynomial chaos approach to stochastic LQ optimal control: Error bounds and infinite-horizon results","authors":"Ruchuan Ou , Jonas Schießl , Michael Heinrich Baumann , Lars Grüne , Timm Faulwasser","doi":"10.1016/j.automatica.2025.112117","DOIUrl":null,"url":null,"abstract":"<div><div>The stochastic linear–quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal state-input trajectory is the unique solution to a corresponding stochastic stationary optimization problem in the sense of probability measures. Moreover, we provide a constructive error analysis for finite-dimensional polynomial chaos approximations of the optimal solutions and of the optimal stationary pair in non-Gaussian settings. A numerical example illustrates our findings.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"174 ","pages":"Article 112117"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825000081","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A polynomial chaos approach to stochastic LQ optimal control: Error bounds and infinite-horizon results
The stochastic linear–quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal state-input trajectory is the unique solution to a corresponding stochastic stationary optimization problem in the sense of probability measures. Moreover, we provide a constructive error analysis for finite-dimensional polynomial chaos approximations of the optimal solutions and of the optimal stationary pair in non-Gaussian settings. A numerical example illustrates our findings.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.