{"title":"基于多层范德华超材料应变工程的可调弹性波带隙","authors":"Yabin Jing, Lifeng Wang and Eric Li","doi":"10.1039/D4CP03540B","DOIUrl":null,"url":null,"abstract":"<p >Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS<small><sub>2</sub></small> vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 12","pages":" 5984-5994"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable elastic wave bandgaps by strain engineering of multilayered van der Waals metamaterials\",\"authors\":\"Yabin Jing, Lifeng Wang and Eric Li\",\"doi\":\"10.1039/D4CP03540B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS<small><sub>2</sub></small> vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 12\",\"pages\":\" 5984-5994\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03540b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03540b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable elastic wave bandgaps by strain engineering of multilayered van der Waals metamaterials
Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS2 vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.