基于多层范德华超材料应变工程的可调弹性波带隙

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yabin Jing, Lifeng Wang and Eric Li
{"title":"基于多层范德华超材料应变工程的可调弹性波带隙","authors":"Yabin Jing, Lifeng Wang and Eric Li","doi":"10.1039/D4CP03540B","DOIUrl":null,"url":null,"abstract":"<p >Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS<small><sub>2</sub></small> vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 12","pages":" 5984-5994"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable elastic wave bandgaps by strain engineering of multilayered van der Waals metamaterials\",\"authors\":\"Yabin Jing, Lifeng Wang and Eric Li\",\"doi\":\"10.1039/D4CP03540B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS<small><sub>2</sub></small> vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 12\",\"pages\":\" 5984-5994\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03540b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03540b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多层范德华(vdW)超材料表现出卓越的机械和热性能,能够根据材料成分、堆叠顺序和层数调整这些特性。由于这些结构的规模非常小,振动和噪声的影响变得非常明显。本研究采用分子动力学(MD)模拟研究了弹性波在多层h-BN/MoS2 vdW超材料中的传输特性。结果表明,通过改变材料的纵向应变和叠加顺序,可以调节这些材料中宽带太赫兹弹性波带隙的位置和宽度。带隙对纵向应变速率非常敏感,在压缩应变下带隙频率增大,在拉伸应变下带隙频率减小。拉伸应变和压缩应变对带隙的影响是不对称的;压缩应变可以显著改变带隙宽度,甚至使其消失。此外,可以通过移动h-BN原子层的位置或在超材料的单元胞内旋转h-BN层90°来控制带隙。该研究为多层vdW异质结构中弹性波的传播提供了一种新的调谐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable elastic wave bandgaps by strain engineering of multilayered van der Waals metamaterials

Tunable elastic wave bandgaps by strain engineering of multilayered van der Waals metamaterials

Multilayered van der Waals (vdW) metamaterials exhibit exceptional mechanical and thermal properties, with the ability to tune these characteristics based on material composition, stacking sequences, and the number of layers. Due to the extremely small scale of these structures, the influence of vibration and noise becomes significant. This study uses molecular dynamics (MD) simulations to investigate the bandgap characteristics of elastic waves in multilayered h-BN/MoS2 vdW metamaterials. It demonstrates that the position and width of the broadband terahertz elastic wave bandgap in these materials can be adjusted by modifying the longitudinal strain and stacking order. The bandgap is notably sensitive to the rate of longitudinal strain, with its frequency increasing under compressive strain and decreasing under tensile strain. The effects of tensile and compressive strains on the bandgap are asymmetric; compressive strain can notably alter the bandgap width and even cause it to disappear. Additionally, the bandgap can be manipulated by shifting the position of the h-BN atomic layer or by rotating the h-BN layer by 90° within the metamaterial's unit cell. This research offers a novel method for tuning elastic wave propagation in multilayered vdW heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信