Xin Zhu, Hongliang Chen, Jinying Wang, Agostino Migliore, Xingxing Li, Yanwei Li, Boyu Wang, Chen Yang, Yang Jiao, Jiawen Cao, Caiyao Yang, Chunyan Gao, Suhang He, Kendall N. Houk, Jinlong Yang, J. Fraser Stoddart, Chuancheng Jia, Xuefeng Guo
{"title":"纳米约束下可逆环加成的单电子催化","authors":"Xin Zhu, Hongliang Chen, Jinying Wang, Agostino Migliore, Xingxing Li, Yanwei Li, Boyu Wang, Chen Yang, Yang Jiao, Jiawen Cao, Caiyao Yang, Chunyan Gao, Suhang He, Kendall N. Houk, Jinlong Yang, J. Fraser Stoddart, Chuancheng Jia, Xuefeng Guo","doi":"10.1021/jacs.4c18064","DOIUrl":null,"url":null,"abstract":"Electron transfer (ET) is crucial in many chemical reactions, but its mechanism and role are hardly understood in nanobiotechnology due to the complexity of reaction species and pathways involved. By modulating and monitoring electron behavior at the single-molecule level, we can better understand the fundamental mechanisms and ways to control them for technological use. Here, we unravel a mechanism of single-electron catalysis under positively charged nanoconfinement. We demonstrate that both (2 + 2) and (4 + 4) cycloadditions can be catalyzed reversibly by a single electron. Key reaction pathways are discovered by monitoring sequential electrical signals in the cycloadditions through advanced single-molecule detection platforms. Experimental and theoretical results consistently demonstrate that combining single ET processes with nanoconfinement involving cucurbit[8]uril can lower the reaction energy barrier and promote reversible cycloaddition. Moreover, we show that the bias voltage can fine-tune ET processes and chemical equilibria in bond formation and cleavage. Our results provide a novel approach to elucidate, modulate, and design electron-involved reactions and functionalized devices.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"31 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Electron Catalysis of Reversible Cycloadditions under Nanoconfinement\",\"authors\":\"Xin Zhu, Hongliang Chen, Jinying Wang, Agostino Migliore, Xingxing Li, Yanwei Li, Boyu Wang, Chen Yang, Yang Jiao, Jiawen Cao, Caiyao Yang, Chunyan Gao, Suhang He, Kendall N. Houk, Jinlong Yang, J. Fraser Stoddart, Chuancheng Jia, Xuefeng Guo\",\"doi\":\"10.1021/jacs.4c18064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron transfer (ET) is crucial in many chemical reactions, but its mechanism and role are hardly understood in nanobiotechnology due to the complexity of reaction species and pathways involved. By modulating and monitoring electron behavior at the single-molecule level, we can better understand the fundamental mechanisms and ways to control them for technological use. Here, we unravel a mechanism of single-electron catalysis under positively charged nanoconfinement. We demonstrate that both (2 + 2) and (4 + 4) cycloadditions can be catalyzed reversibly by a single electron. Key reaction pathways are discovered by monitoring sequential electrical signals in the cycloadditions through advanced single-molecule detection platforms. Experimental and theoretical results consistently demonstrate that combining single ET processes with nanoconfinement involving cucurbit[8]uril can lower the reaction energy barrier and promote reversible cycloaddition. Moreover, we show that the bias voltage can fine-tune ET processes and chemical equilibria in bond formation and cleavage. Our results provide a novel approach to elucidate, modulate, and design electron-involved reactions and functionalized devices.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c18064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-Electron Catalysis of Reversible Cycloadditions under Nanoconfinement
Electron transfer (ET) is crucial in many chemical reactions, but its mechanism and role are hardly understood in nanobiotechnology due to the complexity of reaction species and pathways involved. By modulating and monitoring electron behavior at the single-molecule level, we can better understand the fundamental mechanisms and ways to control them for technological use. Here, we unravel a mechanism of single-electron catalysis under positively charged nanoconfinement. We demonstrate that both (2 + 2) and (4 + 4) cycloadditions can be catalyzed reversibly by a single electron. Key reaction pathways are discovered by monitoring sequential electrical signals in the cycloadditions through advanced single-molecule detection platforms. Experimental and theoretical results consistently demonstrate that combining single ET processes with nanoconfinement involving cucurbit[8]uril can lower the reaction energy barrier and promote reversible cycloaddition. Moreover, we show that the bias voltage can fine-tune ET processes and chemical equilibria in bond formation and cleavage. Our results provide a novel approach to elucidate, modulate, and design electron-involved reactions and functionalized devices.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.