完全最小耦合麦克斯韦- tddft:超越偶极子近似的光-物质相互作用的从头算框架

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Franco P. Bonafé, Esra Ilke Albar, Sebastian T. Ohlmann, Valeriia P. Kosheleva, Carlos M. Bustamante, Francesco Troisi, Angel Rubio, Heiko Appel
{"title":"完全最小耦合麦克斯韦- tddft:超越偶极子近似的光-物质相互作用的从头算框架","authors":"Franco P. Bonafé, Esra Ilke Albar, Sebastian T. Ohlmann, Valeriia P. Kosheleva, Carlos M. Bustamante, Francesco Troisi, Angel Rubio, Heiko Appel","doi":"10.1103/physrevb.111.085114","DOIUrl":null,"url":null,"abstract":"We report an , nonrelativistic QED method that couples light and matter self-consistently beyond the electric dipole approximation and without multipolar truncations. This method is based on an extension of the Maxwell-Pauli-Kohn-Sham approach to a full minimal coupling Hamiltonian, where the space- and time-dependent vector potential is coupled to the matter system, and its back reaction to the radiated fields is generated by the full current density. The implementation in the open-source code is designed for massively parallel multiscale simulations considering different grid spacings for the Maxwell and matter subsystems. Here, we show applications of this framework to simulate renormalized Cherenkov radiation of an electronic wave packet, magneto-optical effects with nonchiral light in nonchiral molecular systems, and renormalized plasmonic modes in a nanoplasmonic dimer. We show that in some cases, the beyond-dipole effects cannot be captured by a multipolar expansion Hamiltonian in the length gauge. Finally, we discuss further opportunities enabled by the framework in the field of twisted light and orbital angular momentum, inelastic light scattering, and strong-field physics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"55 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full minimal coupling Maxwell-TDDFT: An ab initio framework for light-matter interaction beyond the dipole approximation\",\"authors\":\"Franco P. Bonafé, Esra Ilke Albar, Sebastian T. Ohlmann, Valeriia P. Kosheleva, Carlos M. Bustamante, Francesco Troisi, Angel Rubio, Heiko Appel\",\"doi\":\"10.1103/physrevb.111.085114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report an , nonrelativistic QED method that couples light and matter self-consistently beyond the electric dipole approximation and without multipolar truncations. This method is based on an extension of the Maxwell-Pauli-Kohn-Sham approach to a full minimal coupling Hamiltonian, where the space- and time-dependent vector potential is coupled to the matter system, and its back reaction to the radiated fields is generated by the full current density. The implementation in the open-source code is designed for massively parallel multiscale simulations considering different grid spacings for the Maxwell and matter subsystems. Here, we show applications of this framework to simulate renormalized Cherenkov radiation of an electronic wave packet, magneto-optical effects with nonchiral light in nonchiral molecular systems, and renormalized plasmonic modes in a nanoplasmonic dimer. We show that in some cases, the beyond-dipole effects cannot be captured by a multipolar expansion Hamiltonian in the length gauge. Finally, we discuss further opportunities enabled by the framework in the field of twisted light and orbital angular momentum, inelastic light scattering, and strong-field physics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.085114\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.085114","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种非相对论性QED方法,该方法将光和物质自洽地耦合在电偶极近似之外,并且没有多极截断。该方法是基于麦克斯韦-保利-科恩-沙姆方法的扩展到完全最小耦合哈密顿量,其中依赖于空间和时间的矢量势与物质系统耦合,其对辐射场的反反应由完全电流密度产生。开源代码中的实现是为考虑麦克斯韦和物质子系统的不同网格间距的大规模并行多尺度模拟而设计的。在这里,我们展示了该框架的应用,以模拟电子波包的重整切伦科夫辐射,非手性分子系统中非手性光的磁光效应,以及纳米等离子体二聚体中的重整等离子体模式。我们证明,在某些情况下,超偶极效应不能被长度规中的多极扩展哈密顿量捕获。最后,我们讨论了该框架在扭曲光和轨道角动量、非弹性光散射和强场物理领域所带来的进一步机会。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full minimal coupling Maxwell-TDDFT: An ab initio framework for light-matter interaction beyond the dipole approximation
We report an , nonrelativistic QED method that couples light and matter self-consistently beyond the electric dipole approximation and without multipolar truncations. This method is based on an extension of the Maxwell-Pauli-Kohn-Sham approach to a full minimal coupling Hamiltonian, where the space- and time-dependent vector potential is coupled to the matter system, and its back reaction to the radiated fields is generated by the full current density. The implementation in the open-source code is designed for massively parallel multiscale simulations considering different grid spacings for the Maxwell and matter subsystems. Here, we show applications of this framework to simulate renormalized Cherenkov radiation of an electronic wave packet, magneto-optical effects with nonchiral light in nonchiral molecular systems, and renormalized plasmonic modes in a nanoplasmonic dimer. We show that in some cases, the beyond-dipole effects cannot be captured by a multipolar expansion Hamiltonian in the length gauge. Finally, we discuss further opportunities enabled by the framework in the field of twisted light and orbital angular momentum, inelastic light scattering, and strong-field physics. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信