{"title":"通过BDNF/TrkB信号转导抑制PKR可预防神经炎症并挽救抑郁样行为","authors":"Yue Hu, Tahir Ali, Shengnan Mou, Qichao Gong, Ruyan Gao, Yanhua Luo, Shupeng Li, Li Ling, Liangliang Hao","doi":"10.1007/s11481-025-10180-y","DOIUrl":null,"url":null,"abstract":"<p><p>PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"13"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PKR Inhibition Prevents Neuroinflammation and Rescues Depressive-Like Behaviors via BDNF/TrkB Signaling.\",\"authors\":\"Yue Hu, Tahir Ali, Shengnan Mou, Qichao Gong, Ruyan Gao, Yanhua Luo, Shupeng Li, Li Ling, Liangliang Hao\",\"doi\":\"10.1007/s11481-025-10180-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"20 1\",\"pages\":\"13\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-025-10180-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10180-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PKR Inhibition Prevents Neuroinflammation and Rescues Depressive-Like Behaviors via BDNF/TrkB Signaling.
PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.