通过BDNF/TrkB信号转导抑制PKR可预防神经炎症并挽救抑郁样行为

IF 6.2
Yue Hu, Tahir Ali, Shengnan Mou, Qichao Gong, Ruyan Gao, Yanhua Luo, Shupeng Li, Li Ling, Liangliang Hao
{"title":"通过BDNF/TrkB信号转导抑制PKR可预防神经炎症并挽救抑郁样行为","authors":"Yue Hu, Tahir Ali, Shengnan Mou, Qichao Gong, Ruyan Gao, Yanhua Luo, Shupeng Li, Li Ling, Liangliang Hao","doi":"10.1007/s11481-025-10180-y","DOIUrl":null,"url":null,"abstract":"<p><p>PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"13"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PKR Inhibition Prevents Neuroinflammation and Rescues Depressive-Like Behaviors via BDNF/TrkB Signaling.\",\"authors\":\"Yue Hu, Tahir Ali, Shengnan Mou, Qichao Gong, Ruyan Gao, Yanhua Luo, Shupeng Li, Li Ling, Liangliang Hao\",\"doi\":\"10.1007/s11481-025-10180-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"20 1\",\"pages\":\"13\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-025-10180-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10180-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
PKR Inhibition Prevents Neuroinflammation and Rescues Depressive-Like Behaviors via BDNF/TrkB Signaling.

PKR, a kinase implicated in inflammation, accumulates in the brain, but its role in neuroinflammation-related depression is poorly understood. This study aimed to investigate whether pharmacological PKR inhibition using C16 (PKR inhibitor) could reverse LPS-induced neuroinflammation and depressive-like behaviors. Mice (C57BL/6J, 20-22 g, 6-8 weeks old) were administered LPS intraperitoneally for three days to induce depressive-like behavior and neuroinflammation. Simultaneously, mice were treated with C16 (a pharmacological PKR inhibitor) intraperitoneally for the same duration, followed by behavioral assessments. After euthanasia, brain-hippocampus tissues were collected for biochemical analysis. To validate these in vivo findings, BV2 and HT22 cells were cultured and subjected to pharmacological and biochemical analysis. LPS treatment significantly increased hippocampal neuroinflammation (GFAP/IBA-1 p < 0.001), cytokine production (IL-1β, IL-6, TNF-α, p < 0.05), PKR phosphorylation (p < 0.05), and inflammatory signaling (NLRP3/ASC, p < 0.001). Concomitantly, LPS exposure induced depressive-like symptoms (p < 0.001), impaired synaptic function (Synasin-1/SNAP25, p < 0.05), spine numbers (p < 0.001), and downregulated brain-derived neurotrophic factor (BDNF) /TrkB signaling (p < 0.001). Importantly, these effects were attenuated by C16, a PKR inhibitor. C16 also reduced LPS-induced ER stress markers in the hippocampus (p < 0.05). Interestingly, K252a, a BDNF/TrkB inhibitor, reversed the protective effects of C16, increasing both neuroinflammation (p < 0.001) and depressive symptoms (p < 0.001) in LPS-treated mice. Notably, in vitro studies using BV2 and HT22 cells corroborated these findings. In conclusion, these findings suggest that PKR is critical in mediating LPS-induced neuroinflammation and depressive-like behaviors, potentially through interactions with BDNF/TrkB signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信