{"title":"利用计算模拟揭示细胞中的空间信号转导。","authors":"","doi":"10.1038/s43588-025-00772-2","DOIUrl":null,"url":null,"abstract":"We present Spatial Modeling Algorithms for Reactions and Transport (SMART), a software package that simulates spatiotemporally detailed biochemical reaction networks within realistic cellular and subcellular geometries. This paper highlights the use of SMART in several biological test cases including cellular mechanotransduction, calcium signaling in neurons and cardiomyocytes, and adenosine triphosphate synthesis.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 2","pages":"99-100"},"PeriodicalIF":12.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shedding light on spatial signal transduction in cells using computational simulations\",\"authors\":\"\",\"doi\":\"10.1038/s43588-025-00772-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Spatial Modeling Algorithms for Reactions and Transport (SMART), a software package that simulates spatiotemporally detailed biochemical reaction networks within realistic cellular and subcellular geometries. This paper highlights the use of SMART in several biological test cases including cellular mechanotransduction, calcium signaling in neurons and cardiomyocytes, and adenosine triphosphate synthesis.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 2\",\"pages\":\"99-100\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00772-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00772-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Shedding light on spatial signal transduction in cells using computational simulations
We present Spatial Modeling Algorithms for Reactions and Transport (SMART), a software package that simulates spatiotemporally detailed biochemical reaction networks within realistic cellular and subcellular geometries. This paper highlights the use of SMART in several biological test cases including cellular mechanotransduction, calcium signaling in neurons and cardiomyocytes, and adenosine triphosphate synthesis.