血管重塑 BMPER 基因的选择与海岛蜥蜴的海拔适应有关。

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-09-22 eCollection Date: 2025-02-01 DOI:10.1093/evlett/qrae047
Nina Serén, Catarina Pinho, Rodrigo Megía-Palma, Prem Aguilar, Anamarija Žagar, Pedro Andrade, Miguel A Carretero
{"title":"血管重塑 BMPER 基因的选择与海岛蜥蜴的海拔适应有关。","authors":"Nina Serén, Catarina Pinho, Rodrigo Megía-Palma, Prem Aguilar, Anamarija Žagar, Pedro Andrade, Miguel A Carretero","doi":"10.1093/evlett/qrae047","DOIUrl":null,"url":null,"abstract":"<p><p>High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low-altitude (100-600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard <i>Gallotia galloti</i> to uncover signatures of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, clustering in a relatively small number of genomic regions. One of these regions contains <i>BMPER</i>, a gene involved with vascular remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 1","pages":"41-50"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selection on the vascular-remodeling <i>BMPER</i> gene is associated with altitudinal adaptation in an insular lizard.\",\"authors\":\"Nina Serén, Catarina Pinho, Rodrigo Megía-Palma, Prem Aguilar, Anamarija Žagar, Pedro Andrade, Miguel A Carretero\",\"doi\":\"10.1093/evlett/qrae047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low-altitude (100-600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard <i>Gallotia galloti</i> to uncover signatures of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, clustering in a relatively small number of genomic regions. One of these regions contains <i>BMPER</i>, a gene involved with vascular remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"9 1\",\"pages\":\"41-50\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrae047\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae047","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection on the vascular-remodeling BMPER gene is associated with altitudinal adaptation in an insular lizard.

High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low-altitude (100-600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard Gallotia galloti to uncover signatures of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, clustering in a relatively small number of genomic regions. One of these regions contains BMPER, a gene involved with vascular remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信