锂-匹洛卡品诱导颞叶癫痫大鼠模型癫痫发生过程中血浆代谢谱的研究。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-06-01 Epub Date: 2025-02-04 DOI:10.1007/s12035-025-04719-6
Fatma Merve Antmen, Emir Matpan, Ekin Dongel Dayanc, Eylem Ozge Savas, Yunus Eken, Dilan Acar, Alara Ak, Begum Ozefe, Damla Sakar, Ufuk Canozer, Sehla Nurefsan Sancak, Ozkan Ozdemir, Osman Ugur Sezerman, Ahmet Tarık Baykal, Mustafa Serteser, Guldal Suyen
{"title":"锂-匹洛卡品诱导颞叶癫痫大鼠模型癫痫发生过程中血浆代谢谱的研究。","authors":"Fatma Merve Antmen, Emir Matpan, Ekin Dongel Dayanc, Eylem Ozge Savas, Yunus Eken, Dilan Acar, Alara Ak, Begum Ozefe, Damla Sakar, Ufuk Canozer, Sehla Nurefsan Sancak, Ozkan Ozdemir, Osman Ugur Sezerman, Ahmet Tarık Baykal, Mustafa Serteser, Guldal Suyen","doi":"10.1007/s12035-025-04719-6","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal lobe epilepsy (TLE) arises mostly because of an initial injury. Certain stimuli can make a normal brain prone to repeated, spontaneous seizures via a process called epileptogenesis. This study examined the plasma metabolomics profile in rats with the induced TLE to identify feasible biomarkers that can distinguish progression of epileptogenesis in three different time points and reveal the underlying mechanisms of epileptogenesis. Status epilepticus (SE) was induced by repetitive intraperitoneal injections of low-dose lithium chloride-pilocarpine hydrocholoride. Blood samples were collected 48 h, 1 week, and 6 weeks after SE, respectively. Plasma metabolites were analyzed by nuclear magnetic resonance (NMR) spectrometry. Statistical analysis was performed using MetaboAnalyst 6.0. An orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to represent variations between the TLE model groups and respective controls. Volcano plot analysis was used to identify key features, applying a fold-change criterion of 1.5 and a t-test threshold of 0.05. 48 h after SE, dimethyl sulfone (DMSO<sub>2</sub>) and creatinine levels were decreased, whereas glycine and creatine levels were increased. The only metabolite that changed 1 week after SE was pyruvic acid, which was increased compared to its control level. Lactic acid, pyruvic acid, and succinic acid levels were increased 6 weeks after SE. The identified metabolites were especially related to the tricarboxylic acid cycle and glycine, serine, and threonine metabolism. The results illustrate that distinct plasma metabolites can function as phase-specific biomarkers in TLE and reveal new insights into the mechanisms underlying SE.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7469-7483"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078362/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Metabolic Profile of Plasma During Epileptogenesis in a Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy.\",\"authors\":\"Fatma Merve Antmen, Emir Matpan, Ekin Dongel Dayanc, Eylem Ozge Savas, Yunus Eken, Dilan Acar, Alara Ak, Begum Ozefe, Damla Sakar, Ufuk Canozer, Sehla Nurefsan Sancak, Ozkan Ozdemir, Osman Ugur Sezerman, Ahmet Tarık Baykal, Mustafa Serteser, Guldal Suyen\",\"doi\":\"10.1007/s12035-025-04719-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temporal lobe epilepsy (TLE) arises mostly because of an initial injury. Certain stimuli can make a normal brain prone to repeated, spontaneous seizures via a process called epileptogenesis. This study examined the plasma metabolomics profile in rats with the induced TLE to identify feasible biomarkers that can distinguish progression of epileptogenesis in three different time points and reveal the underlying mechanisms of epileptogenesis. Status epilepticus (SE) was induced by repetitive intraperitoneal injections of low-dose lithium chloride-pilocarpine hydrocholoride. Blood samples were collected 48 h, 1 week, and 6 weeks after SE, respectively. Plasma metabolites were analyzed by nuclear magnetic resonance (NMR) spectrometry. Statistical analysis was performed using MetaboAnalyst 6.0. An orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to represent variations between the TLE model groups and respective controls. Volcano plot analysis was used to identify key features, applying a fold-change criterion of 1.5 and a t-test threshold of 0.05. 48 h after SE, dimethyl sulfone (DMSO<sub>2</sub>) and creatinine levels were decreased, whereas glycine and creatine levels were increased. The only metabolite that changed 1 week after SE was pyruvic acid, which was increased compared to its control level. Lactic acid, pyruvic acid, and succinic acid levels were increased 6 weeks after SE. The identified metabolites were especially related to the tricarboxylic acid cycle and glycine, serine, and threonine metabolism. The results illustrate that distinct plasma metabolites can function as phase-specific biomarkers in TLE and reveal new insights into the mechanisms underlying SE.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"7469-7483\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04719-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04719-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

颞叶癫痫(TLE)主要是由初始损伤引起的。某些刺激可以使正常的大脑通过一种称为癫痫发生的过程容易发生反复的、自发的癫痫发作。本研究检测了诱导TLE大鼠的血浆代谢组学特征,以确定在三个不同时间点区分癫痫发生进展的可行生物标志物,并揭示癫痫发生的潜在机制。反复腹腔注射低剂量氯化锂-盐酸匹罗卡品诱导癫痫持续状态(SE)。分别于SE后48小时、1周和6周采集血样。采用核磁共振光谱法分析血浆代谢物。采用MetaboAnalyst 6.0进行统计学分析。采用正交偏最小二乘判别分析(OPLS-DA)模型来表示TLE模型组与各自对照组之间的差异。火山图分析用于识别关键特征,采用1.5倍变化准则和0.05的t检验阈值。SE处理48 h后,二甲基砜(DMSO2)和肌酐水平降低,甘氨酸和肌酐水平升高。在SE后1周,唯一发生变化的代谢物是丙酮酸,与对照相比有所增加。乳酸、丙酮酸和琥珀酸水平在SE后6周升高。鉴定的代谢物与三羧酸循环和甘氨酸、丝氨酸和苏氨酸代谢特别相关。结果表明,不同的血浆代谢物可以作为TLE的阶段特异性生物标志物,并为SE的机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Metabolic Profile of Plasma During Epileptogenesis in a Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy.

Temporal lobe epilepsy (TLE) arises mostly because of an initial injury. Certain stimuli can make a normal brain prone to repeated, spontaneous seizures via a process called epileptogenesis. This study examined the plasma metabolomics profile in rats with the induced TLE to identify feasible biomarkers that can distinguish progression of epileptogenesis in three different time points and reveal the underlying mechanisms of epileptogenesis. Status epilepticus (SE) was induced by repetitive intraperitoneal injections of low-dose lithium chloride-pilocarpine hydrocholoride. Blood samples were collected 48 h, 1 week, and 6 weeks after SE, respectively. Plasma metabolites were analyzed by nuclear magnetic resonance (NMR) spectrometry. Statistical analysis was performed using MetaboAnalyst 6.0. An orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to represent variations between the TLE model groups and respective controls. Volcano plot analysis was used to identify key features, applying a fold-change criterion of 1.5 and a t-test threshold of 0.05. 48 h after SE, dimethyl sulfone (DMSO2) and creatinine levels were decreased, whereas glycine and creatine levels were increased. The only metabolite that changed 1 week after SE was pyruvic acid, which was increased compared to its control level. Lactic acid, pyruvic acid, and succinic acid levels were increased 6 weeks after SE. The identified metabolites were especially related to the tricarboxylic acid cycle and glycine, serine, and threonine metabolism. The results illustrate that distinct plasma metabolites can function as phase-specific biomarkers in TLE and reveal new insights into the mechanisms underlying SE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信