大鼠吞咽过程中二腹肌后腹的中枢神经控制。

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Yuhei Tsutsui, Titi Chotirungsan, Charng-Rong Pan, Satomi Kawada, Jin Magara, Takanori Tsujimura, Keiichiro Okamoto, Makoto Inoue
{"title":"大鼠吞咽过程中二腹肌后腹的中枢神经控制。","authors":"Yuhei Tsutsui, Titi Chotirungsan, Charng-Rong Pan, Satomi Kawada, Jin Magara, Takanori Tsujimura, Keiichiro Okamoto, Makoto Inoue","doi":"10.1152/ajpgi.00374.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to clarify whether the posterior belly of the digastric (post-Dig) muscle is activated during the swallowing reflex and whether the post-Dig muscle is directly controlled by the swallowing central pattern generator (CPG) in anesthetized rats, using physiological and immunohistochemical approaches. In physiological study, electromyograms (EMGs) of the post-Dig, sternohyoid and thyrohyoid muscles, and the diaphragm were recorded during respiration and swallowing with and without airway stenosis. In the immunohistochemical study, c-Fos immunoreactivity for expression of cells during swallowing was analyzed. Motoneurons were identified using immunohistochemistry with Fluoro-gold (FG). EMG bursts were observed in the hyoid muscles during the inspiratory phase and swallowing. With airway stenosis, the swallowing EMG activity was facilitated in terms of duration and area only in the post-Dig muscle. The coordination of these EMG activities during swallowing was maintained with airway stenosis. In contrast, the offset of the post-Dig EMG burst was delayed with airway stenosis. c-Fos-positive cells were observed in the accessory facial nucleus (Acs7), but only in the rostral portion. FG-labeled cells were observed in Acs7. Several c-Fos/FG double-labeled cells were observed only in the rostral Acs7. These results suggested that the post-Dig muscle is activated during swallowing, the activation of which is controlled by the swallowing CPG, and that the distribution of Acs7 neurons, which innervate the post-Dig muscle, was uneven in the nucleus. In addition, the modulation of post-Dig muscle activity during inspiration might be due to changes in peripheral conditions via respiratory CPG.<b>NEW & NOTEWORTHY</b> The posterior belly of the digastric muscle is activated during the inspiratory phase and swallowing. Increased airway resistance facilitates both inspiratory and swallowing activities of this muscle. Immunohistochemistry revealed that the motoneurons innervating the posterior belly of the digastric muscle were activated during swallowing only in the rostral portion of the accessory facial nucleus. These results suggested that the posterior belly of the digastric muscle is controlled by the respiratory and swallowing central pattern generators.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G277-G288"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The central neural control of the posterior belly of the digastric muscles during swallowing in rats.\",\"authors\":\"Yuhei Tsutsui, Titi Chotirungsan, Charng-Rong Pan, Satomi Kawada, Jin Magara, Takanori Tsujimura, Keiichiro Okamoto, Makoto Inoue\",\"doi\":\"10.1152/ajpgi.00374.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to clarify whether the posterior belly of the digastric (post-Dig) muscle is activated during the swallowing reflex and whether the post-Dig muscle is directly controlled by the swallowing central pattern generator (CPG) in anesthetized rats, using physiological and immunohistochemical approaches. In physiological study, electromyograms (EMGs) of the post-Dig, sternohyoid and thyrohyoid muscles, and the diaphragm were recorded during respiration and swallowing with and without airway stenosis. In the immunohistochemical study, c-Fos immunoreactivity for expression of cells during swallowing was analyzed. Motoneurons were identified using immunohistochemistry with Fluoro-gold (FG). EMG bursts were observed in the hyoid muscles during the inspiratory phase and swallowing. With airway stenosis, the swallowing EMG activity was facilitated in terms of duration and area only in the post-Dig muscle. The coordination of these EMG activities during swallowing was maintained with airway stenosis. In contrast, the offset of the post-Dig EMG burst was delayed with airway stenosis. c-Fos-positive cells were observed in the accessory facial nucleus (Acs7), but only in the rostral portion. FG-labeled cells were observed in Acs7. Several c-Fos/FG double-labeled cells were observed only in the rostral Acs7. These results suggested that the post-Dig muscle is activated during swallowing, the activation of which is controlled by the swallowing CPG, and that the distribution of Acs7 neurons, which innervate the post-Dig muscle, was uneven in the nucleus. In addition, the modulation of post-Dig muscle activity during inspiration might be due to changes in peripheral conditions via respiratory CPG.<b>NEW & NOTEWORTHY</b> The posterior belly of the digastric muscle is activated during the inspiratory phase and swallowing. Increased airway resistance facilitates both inspiratory and swallowing activities of this muscle. Immunohistochemistry revealed that the motoneurons innervating the posterior belly of the digastric muscle were activated during swallowing only in the rostral portion of the accessory facial nucleus. These results suggested that the posterior belly of the digastric muscle is controlled by the respiratory and swallowing central pattern generators.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G277-G288\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00374.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00374.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过生理和免疫组织化学方法,阐明麻醉大鼠吞咽反射时二腹肌后腹(后dig)是否被激活,以及后dig肌是否直接受吞咽中枢模式发生器(CPG)的控制。在生理研究中,分别记录呼吸和吞咽时胸骨舌骨肌、甲状舌骨肌和膈肌的肌电图。在免疫组化研究中,分析了c-Fos对吞咽过程中细胞表达的免疫反应性。运动神经元采用免疫组化氟金(FG)鉴定。吸气期和吞咽期舌骨肌肌电图显示。气道狭窄时,吞咽肌电活动仅在挖后肌持续时间和面积上有所促进。吞咽过程中这些肌电图活动的协调性在气道狭窄时得以维持。相反,dig后肌电图爆发的偏移随着气道狭窄而延迟。c- fos阳性细胞见于面副核(Acs7),但仅见于吻侧部分。在Acs7中观察到fg标记细胞。c-Fos/FG双标记细胞仅在吻侧Acs7中观察到。上述结果表明,大鼠吞咽过程中dig后肌被激活,其激活受吞咽CPG控制,而支配dig后肌的Acs7神经元在细胞核内分布不均匀。此外,吸气时挖后肌活动的调节可能是由于呼吸CPG引起的外周条件的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The central neural control of the posterior belly of the digastric muscles during swallowing in rats.

The aim of this study was to clarify whether the posterior belly of the digastric (post-Dig) muscle is activated during the swallowing reflex and whether the post-Dig muscle is directly controlled by the swallowing central pattern generator (CPG) in anesthetized rats, using physiological and immunohistochemical approaches. In physiological study, electromyograms (EMGs) of the post-Dig, sternohyoid and thyrohyoid muscles, and the diaphragm were recorded during respiration and swallowing with and without airway stenosis. In the immunohistochemical study, c-Fos immunoreactivity for expression of cells during swallowing was analyzed. Motoneurons were identified using immunohistochemistry with Fluoro-gold (FG). EMG bursts were observed in the hyoid muscles during the inspiratory phase and swallowing. With airway stenosis, the swallowing EMG activity was facilitated in terms of duration and area only in the post-Dig muscle. The coordination of these EMG activities during swallowing was maintained with airway stenosis. In contrast, the offset of the post-Dig EMG burst was delayed with airway stenosis. c-Fos-positive cells were observed in the accessory facial nucleus (Acs7), but only in the rostral portion. FG-labeled cells were observed in Acs7. Several c-Fos/FG double-labeled cells were observed only in the rostral Acs7. These results suggested that the post-Dig muscle is activated during swallowing, the activation of which is controlled by the swallowing CPG, and that the distribution of Acs7 neurons, which innervate the post-Dig muscle, was uneven in the nucleus. In addition, the modulation of post-Dig muscle activity during inspiration might be due to changes in peripheral conditions via respiratory CPG.NEW & NOTEWORTHY The posterior belly of the digastric muscle is activated during the inspiratory phase and swallowing. Increased airway resistance facilitates both inspiratory and swallowing activities of this muscle. Immunohistochemistry revealed that the motoneurons innervating the posterior belly of the digastric muscle were activated during swallowing only in the rostral portion of the accessory facial nucleus. These results suggested that the posterior belly of the digastric muscle is controlled by the respiratory and swallowing central pattern generators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信