骨融合材料:过去、现在和未来。

IF 2.3 Q2 ORTHOPEDICS
Young-Hoon Kim, Ki-Won Kim, Kee-Won Rhyu, Jong-Beom Park, Jae-Hyuk Shin, Young-Yul Kim, Jun-Seok Lee, Joong-Hyun Ahn, Ji-Hyun Ryu, Hyung-Youl Park, Sang-Il Kim
{"title":"骨融合材料:过去、现在和未来。","authors":"Young-Hoon Kim, Ki-Won Kim, Kee-Won Rhyu, Jong-Beom Park, Jae-Hyuk Shin, Young-Yul Kim, Jun-Seok Lee, Joong-Hyun Ahn, Ji-Hyun Ryu, Hyung-Youl Park, Sang-Il Kim","doi":"10.31616/asj.2024.0520","DOIUrl":null,"url":null,"abstract":"<p><p>Bone fusion is one of the mainstay managements for degenerative spinal diseases and critical-sized bone defects resulting from trauma, tumors, infection, and nonunion. Bone graft materials are required for promoting bone healing, with autografts historically considered the gold standard due to their osteogenic, osteoinductive, and osteoconductive properties. However, donor site morbidities have led to the development of alternative bone graft substitutes. Currently available alternative options for bone fusion include allografts, ceramics, demineralized bone matrix (DBM), and bone morphogenetic proteins (BMPs). Each material has its advantages and disadvantages. Allografts avoid donor site morbidities but lack osteogenic properties and pose disease transmission risks. DBMs are acid-extracted allografts that have osteoconductive and osteoinductive properties but require combination with autografts because of the lack of evidence for their stand-alone use. BMP-2 has potent osteoinductive properties and is considered an ideal fusion material, but faces unresolved challenges related to optimal dosage and carrier. Synthetic peptides, mimicking the cell-binding domain of type I collagen, facilitate the attachment of osteogenic cells (such as osteoblasts) to the graft material and the production of extracellular matrix, leading to improved bone growth at the fusion site. The development of materials with ideal properties is a research hotspot. Recent advancements in biomaterials, such as hydrogels, nanomaterials, and three-dimensional-printed biomaterials, offer promising future options for bone fusion. This review provides an overview of available bone fusion materials, their advantages and disadvantages, and introduces emerging candidate options for bone fusion.</p>","PeriodicalId":8555,"journal":{"name":"Asian Spine Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone fusion materials: past, present, and future.\",\"authors\":\"Young-Hoon Kim, Ki-Won Kim, Kee-Won Rhyu, Jong-Beom Park, Jae-Hyuk Shin, Young-Yul Kim, Jun-Seok Lee, Joong-Hyun Ahn, Ji-Hyun Ryu, Hyung-Youl Park, Sang-Il Kim\",\"doi\":\"10.31616/asj.2024.0520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone fusion is one of the mainstay managements for degenerative spinal diseases and critical-sized bone defects resulting from trauma, tumors, infection, and nonunion. Bone graft materials are required for promoting bone healing, with autografts historically considered the gold standard due to their osteogenic, osteoinductive, and osteoconductive properties. However, donor site morbidities have led to the development of alternative bone graft substitutes. Currently available alternative options for bone fusion include allografts, ceramics, demineralized bone matrix (DBM), and bone morphogenetic proteins (BMPs). Each material has its advantages and disadvantages. Allografts avoid donor site morbidities but lack osteogenic properties and pose disease transmission risks. DBMs are acid-extracted allografts that have osteoconductive and osteoinductive properties but require combination with autografts because of the lack of evidence for their stand-alone use. BMP-2 has potent osteoinductive properties and is considered an ideal fusion material, but faces unresolved challenges related to optimal dosage and carrier. Synthetic peptides, mimicking the cell-binding domain of type I collagen, facilitate the attachment of osteogenic cells (such as osteoblasts) to the graft material and the production of extracellular matrix, leading to improved bone growth at the fusion site. The development of materials with ideal properties is a research hotspot. Recent advancements in biomaterials, such as hydrogels, nanomaterials, and three-dimensional-printed biomaterials, offer promising future options for bone fusion. This review provides an overview of available bone fusion materials, their advantages and disadvantages, and introduces emerging candidate options for bone fusion.</p>\",\"PeriodicalId\":8555,\"journal\":{\"name\":\"Asian Spine Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Spine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31616/asj.2024.0520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Spine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31616/asj.2024.0520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone fusion materials: past, present, and future.

Bone fusion is one of the mainstay managements for degenerative spinal diseases and critical-sized bone defects resulting from trauma, tumors, infection, and nonunion. Bone graft materials are required for promoting bone healing, with autografts historically considered the gold standard due to their osteogenic, osteoinductive, and osteoconductive properties. However, donor site morbidities have led to the development of alternative bone graft substitutes. Currently available alternative options for bone fusion include allografts, ceramics, demineralized bone matrix (DBM), and bone morphogenetic proteins (BMPs). Each material has its advantages and disadvantages. Allografts avoid donor site morbidities but lack osteogenic properties and pose disease transmission risks. DBMs are acid-extracted allografts that have osteoconductive and osteoinductive properties but require combination with autografts because of the lack of evidence for their stand-alone use. BMP-2 has potent osteoinductive properties and is considered an ideal fusion material, but faces unresolved challenges related to optimal dosage and carrier. Synthetic peptides, mimicking the cell-binding domain of type I collagen, facilitate the attachment of osteogenic cells (such as osteoblasts) to the graft material and the production of extracellular matrix, leading to improved bone growth at the fusion site. The development of materials with ideal properties is a research hotspot. Recent advancements in biomaterials, such as hydrogels, nanomaterials, and three-dimensional-printed biomaterials, offer promising future options for bone fusion. This review provides an overview of available bone fusion materials, their advantages and disadvantages, and introduces emerging candidate options for bone fusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Spine Journal
Asian Spine Journal ORTHOPEDICS-
CiteScore
5.10
自引率
4.30%
发文量
108
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信