Imhwan Kim, Jinseok Ryu, Eunsu Lee, Sangmin Lee, Seokje Lee, Wonwoo Suh, Jamin Lee, Miyoung Kim, Hong seok Oh, Gyu-Chul Yi
{"title":"分子束外延In2Te3电子器件","authors":"Imhwan Kim, Jinseok Ryu, Eunsu Lee, Sangmin Lee, Seokje Lee, Wonwoo Suh, Jamin Lee, Miyoung Kim, Hong seok Oh, Gyu-Chul Yi","doi":"10.1038/s41427-024-00578-0","DOIUrl":null,"url":null,"abstract":"We report on the electrical characteristics of field-effect transistors (FETs) and Schottky diodes based on In2Te3 grown on hexagonal boron nitride (h-BN) substrates utilizing molecular beam epitaxy (MBE). A two-step growth method was used to increase surface coverage and large grain sizes for high-quality In2Te3. Scanning transmission electron microscopy (STEM) imaging revealed an atomically clean and abrupt interface between the In2Te3 and h-BN substrates. Compared with the previously reported In2Te3 FETs, the MBE-grown In2Te3 FETs exhibited superior electrical properties, including a mobility of 6.07 cm2 V−1 s−1, a subthreshold swing close to 6 V dec−1, and an impressive on/off ratio of approximately 105. Furthermore, the Ti/In2Te3 Schottky diodes exhibit a low saturation current of 0.4 nA, an ideality factor of 26.7, and a Schottky barrier height of 0.68 eV. We report on the fabrication and electrical characteristics of In2Te3 thin films grown on h-BN using molecular beam epitaxy(MBE). Cross-sectional scanning transmission electron microscopy images showed an atomically clean and abrupt interface between In2Te3 and h-BN substrates. The MBE-grown In2Te3 electronic devices exhibited superior electrical properties compared to previously reported In2Te3 field effect transistors(FETs) and In2Te3-based Schottky diodes.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-6"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00578-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular beam epitaxial In2Te3 electronic devices\",\"authors\":\"Imhwan Kim, Jinseok Ryu, Eunsu Lee, Sangmin Lee, Seokje Lee, Wonwoo Suh, Jamin Lee, Miyoung Kim, Hong seok Oh, Gyu-Chul Yi\",\"doi\":\"10.1038/s41427-024-00578-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the electrical characteristics of field-effect transistors (FETs) and Schottky diodes based on In2Te3 grown on hexagonal boron nitride (h-BN) substrates utilizing molecular beam epitaxy (MBE). A two-step growth method was used to increase surface coverage and large grain sizes for high-quality In2Te3. Scanning transmission electron microscopy (STEM) imaging revealed an atomically clean and abrupt interface between the In2Te3 and h-BN substrates. Compared with the previously reported In2Te3 FETs, the MBE-grown In2Te3 FETs exhibited superior electrical properties, including a mobility of 6.07 cm2 V−1 s−1, a subthreshold swing close to 6 V dec−1, and an impressive on/off ratio of approximately 105. Furthermore, the Ti/In2Te3 Schottky diodes exhibit a low saturation current of 0.4 nA, an ideality factor of 26.7, and a Schottky barrier height of 0.68 eV. We report on the fabrication and electrical characteristics of In2Te3 thin films grown on h-BN using molecular beam epitaxy(MBE). Cross-sectional scanning transmission electron microscopy images showed an atomically clean and abrupt interface between In2Te3 and h-BN substrates. The MBE-grown In2Te3 electronic devices exhibited superior electrical properties compared to previously reported In2Te3 field effect transistors(FETs) and In2Te3-based Schottky diodes.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-024-00578-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-024-00578-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00578-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文报道了利用分子束外延技术(MBE)在六方氮化硼(h-BN)衬底上生长的基于In2Te3的场效应晶体管(fet)和肖特基二极管的电学特性。采用两步生长法制备了高质量的In2Te3,增加了表面覆盖度和晶粒尺寸。扫描透射电子显微镜(STEM)成像显示In2Te3和h-BN衬底之间有一个原子清洁和突然的界面。与先前报道的In2Te3 fet相比,mbe生长的In2Te3 fet具有优异的电学性能,包括迁移率为6.07 cm2 V−1 s−1,亚阈值摆幅接近6 V dec−1,以及令人印象深刻的约105的开/关比。此外,Ti/In2Te3肖特基二极管的饱和电流为0.4 nA,理想因数为26.7,肖特基势垒高度为0.68 eV。本文报道了利用分子束外延(MBE)在h-BN上生长的In2Te3薄膜的制备及其电学特性。横断面扫描透射电子显微镜图像显示,In2Te3和h-BN衬底之间有一个原子清洁和突然的界面。与先前报道的In2Te3场效应晶体管(fet)和基于In2Te3的肖特基二极管相比,mbe生长的In2Te3电子器件表现出优越的电学性能。
We report on the electrical characteristics of field-effect transistors (FETs) and Schottky diodes based on In2Te3 grown on hexagonal boron nitride (h-BN) substrates utilizing molecular beam epitaxy (MBE). A two-step growth method was used to increase surface coverage and large grain sizes for high-quality In2Te3. Scanning transmission electron microscopy (STEM) imaging revealed an atomically clean and abrupt interface between the In2Te3 and h-BN substrates. Compared with the previously reported In2Te3 FETs, the MBE-grown In2Te3 FETs exhibited superior electrical properties, including a mobility of 6.07 cm2 V−1 s−1, a subthreshold swing close to 6 V dec−1, and an impressive on/off ratio of approximately 105. Furthermore, the Ti/In2Te3 Schottky diodes exhibit a low saturation current of 0.4 nA, an ideality factor of 26.7, and a Schottky barrier height of 0.68 eV. We report on the fabrication and electrical characteristics of In2Te3 thin films grown on h-BN using molecular beam epitaxy(MBE). Cross-sectional scanning transmission electron microscopy images showed an atomically clean and abrupt interface between In2Te3 and h-BN substrates. The MBE-grown In2Te3 electronic devices exhibited superior electrical properties compared to previously reported In2Te3 field effect transistors(FETs) and In2Te3-based Schottky diodes.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.