{"title":"太阳轨道器:对任务和早期科学成果的简短回顾","authors":"Louise Harra, Daniel Müller","doi":"10.1007/s10509-025-04400-3","DOIUrl":null,"url":null,"abstract":"<div><p>On 9 February 2020 at 11:03 pm EST, an Atlas V 411 rocket launched the ESA/ NASA Solar Orbiter mission. This mission was the culmination of decades of work across many countries to achieve the goal of getting close to the Sun and measuring how the Sun creates and maintains the heliosphere. The mission’s goal is to understand how the inner heliosphere works and how solar activity impacts it. The spacecraft achieves this with a specially designed highly elliptical orbit that gets close to the Sun twice a year. It reaches as close as 0.28 au requiring a novel heat shield to protect the instruments from the intense heat (the front side of the heat shield reaches around 500 <sup>∘</sup>C at this location). There are ten scientific instruments onboard: Six remote-sensing instruments observe solar activity across the electromagnetic spectrum on small and large scales, including imaging the source regions of the solar wind. They are accompanied by four in-situ instruments to probe the properties of the solar wind as it flows past the spacecraft. This review paper describes a selection of results from Solar Orbiter during its cruise phase and the beginning of its nominal scientific operations phase, and looks towards the next phases of the mission, when the spacecraft leaves the ecliptic plane to observe the solar poles for the first time.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04400-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Solar orbiter: a short review of the mission and early science results\",\"authors\":\"Louise Harra, Daniel Müller\",\"doi\":\"10.1007/s10509-025-04400-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On 9 February 2020 at 11:03 pm EST, an Atlas V 411 rocket launched the ESA/ NASA Solar Orbiter mission. This mission was the culmination of decades of work across many countries to achieve the goal of getting close to the Sun and measuring how the Sun creates and maintains the heliosphere. The mission’s goal is to understand how the inner heliosphere works and how solar activity impacts it. The spacecraft achieves this with a specially designed highly elliptical orbit that gets close to the Sun twice a year. It reaches as close as 0.28 au requiring a novel heat shield to protect the instruments from the intense heat (the front side of the heat shield reaches around 500 <sup>∘</sup>C at this location). There are ten scientific instruments onboard: Six remote-sensing instruments observe solar activity across the electromagnetic spectrum on small and large scales, including imaging the source regions of the solar wind. They are accompanied by four in-situ instruments to probe the properties of the solar wind as it flows past the spacecraft. This review paper describes a selection of results from Solar Orbiter during its cruise phase and the beginning of its nominal scientific operations phase, and looks towards the next phases of the mission, when the spacecraft leaves the ecliptic plane to observe the solar poles for the first time.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10509-025-04400-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04400-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04400-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Solar orbiter: a short review of the mission and early science results
On 9 February 2020 at 11:03 pm EST, an Atlas V 411 rocket launched the ESA/ NASA Solar Orbiter mission. This mission was the culmination of decades of work across many countries to achieve the goal of getting close to the Sun and measuring how the Sun creates and maintains the heliosphere. The mission’s goal is to understand how the inner heliosphere works and how solar activity impacts it. The spacecraft achieves this with a specially designed highly elliptical orbit that gets close to the Sun twice a year. It reaches as close as 0.28 au requiring a novel heat shield to protect the instruments from the intense heat (the front side of the heat shield reaches around 500 ∘C at this location). There are ten scientific instruments onboard: Six remote-sensing instruments observe solar activity across the electromagnetic spectrum on small and large scales, including imaging the source regions of the solar wind. They are accompanied by four in-situ instruments to probe the properties of the solar wind as it flows past the spacecraft. This review paper describes a selection of results from Solar Orbiter during its cruise phase and the beginning of its nominal scientific operations phase, and looks towards the next phases of the mission, when the spacecraft leaves the ecliptic plane to observe the solar poles for the first time.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.