Marie-Geneviève Guiraud, HaDi MaBouDi, Joe Woodgate, Olivia K. Bates, Oscar Ramos Rodriguez, Vince Gallo, Andrew B. Barron
{"title":"大黄蜂是如何处理到达和离开花朵时看到的相互矛盾的信息的","authors":"Marie-Geneviève Guiraud, HaDi MaBouDi, Joe Woodgate, Olivia K. Bates, Oscar Ramos Rodriguez, Vince Gallo, Andrew B. Barron","doi":"10.1007/s10071-024-01926-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bees are flexible and adaptive learners, capable of learning stimuli seen on arrival and at departure from flowers where they have fed. This gives bees the potential to learn all information associated with a feeding event, but it also presents the challenge of managing information that is irrelevant, inconsistent, or conflicting. Here, we examined how presenting bumblebees with conflicting visual information before and after feeding influenced their learning rate and what they learned. Bees were trained to feeder stations mounted in front of a computer monitor. Visual stimuli were displayed behind each feeder station on the monitor. Positively reinforced stimuli (CS +) marked feeders offering sucrose solution. Negatively reinforced stimuli (CS−) marked feeders offering quinine solution. While alighted at the feeder station the stimuli were likely not visible to the bee. The “constant stimulus” training group saw the same stimulus throughout. For the “switched stimulus” training group, the CS + changed to the CS− during feeding. Learning was slower in the “switched stimulus” training group compared to the constant stimulus” group, but the training groups did not differ in their learning performance or the extent to which they generalised their learning. The information conflict in the “switched stimulus” group did not interfere with what had been learned. Differences between the “switched” and “constant stimulus” groups were greater for bees trained on a horizontal CS + than a vertical CS + suggesting bees differ in their processing of vertically and horizontally oriented stimuli. We discuss how bumblebees might resolve this type of information conflict so effectively, drawing on the known neurobiology of their visual learning system.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10071-024-01926-x.pdf","citationCount":"0","resultStr":"{\"title\":\"How bumblebees manage conflicting information seen on arrival and departure from flowers\",\"authors\":\"Marie-Geneviève Guiraud, HaDi MaBouDi, Joe Woodgate, Olivia K. Bates, Oscar Ramos Rodriguez, Vince Gallo, Andrew B. Barron\",\"doi\":\"10.1007/s10071-024-01926-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bees are flexible and adaptive learners, capable of learning stimuli seen on arrival and at departure from flowers where they have fed. This gives bees the potential to learn all information associated with a feeding event, but it also presents the challenge of managing information that is irrelevant, inconsistent, or conflicting. Here, we examined how presenting bumblebees with conflicting visual information before and after feeding influenced their learning rate and what they learned. Bees were trained to feeder stations mounted in front of a computer monitor. Visual stimuli were displayed behind each feeder station on the monitor. Positively reinforced stimuli (CS +) marked feeders offering sucrose solution. Negatively reinforced stimuli (CS−) marked feeders offering quinine solution. While alighted at the feeder station the stimuli were likely not visible to the bee. The “constant stimulus” training group saw the same stimulus throughout. For the “switched stimulus” training group, the CS + changed to the CS− during feeding. Learning was slower in the “switched stimulus” training group compared to the constant stimulus” group, but the training groups did not differ in their learning performance or the extent to which they generalised their learning. The information conflict in the “switched stimulus” group did not interfere with what had been learned. Differences between the “switched” and “constant stimulus” groups were greater for bees trained on a horizontal CS + than a vertical CS + suggesting bees differ in their processing of vertically and horizontally oriented stimuli. We discuss how bumblebees might resolve this type of information conflict so effectively, drawing on the known neurobiology of their visual learning system.</p></div>\",\"PeriodicalId\":7879,\"journal\":{\"name\":\"Animal Cognition\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10071-024-01926-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-024-01926-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-024-01926-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
How bumblebees manage conflicting information seen on arrival and departure from flowers
Bees are flexible and adaptive learners, capable of learning stimuli seen on arrival and at departure from flowers where they have fed. This gives bees the potential to learn all information associated with a feeding event, but it also presents the challenge of managing information that is irrelevant, inconsistent, or conflicting. Here, we examined how presenting bumblebees with conflicting visual information before and after feeding influenced their learning rate and what they learned. Bees were trained to feeder stations mounted in front of a computer monitor. Visual stimuli were displayed behind each feeder station on the monitor. Positively reinforced stimuli (CS +) marked feeders offering sucrose solution. Negatively reinforced stimuli (CS−) marked feeders offering quinine solution. While alighted at the feeder station the stimuli were likely not visible to the bee. The “constant stimulus” training group saw the same stimulus throughout. For the “switched stimulus” training group, the CS + changed to the CS− during feeding. Learning was slower in the “switched stimulus” training group compared to the constant stimulus” group, but the training groups did not differ in their learning performance or the extent to which they generalised their learning. The information conflict in the “switched stimulus” group did not interfere with what had been learned. Differences between the “switched” and “constant stimulus” groups were greater for bees trained on a horizontal CS + than a vertical CS + suggesting bees differ in their processing of vertically and horizontally oriented stimuli. We discuss how bumblebees might resolve this type of information conflict so effectively, drawing on the known neurobiology of their visual learning system.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.