{"title":"Choquet积分,Hausdorff内容和稀疏算子","authors":"Naoya Hatano, Ryota Kawasumi, Hiroki Saito, Hitoshi Tanaka","doi":"10.1007/s00013-024-02083-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H^d\\)</span>, <span>\\(0<d<n\\)</span>, be the dyadic Hausdorff content of the <i>n</i>-dimensional Euclidean space <span>\\({{\\mathbb {R}}}^n\\)</span>. It is shown that <span>\\(H^d\\)</span> counts a Cantor set of the unit cube <span>\\([0, 1)^n\\)</span> as <span>\\(\\approx 1\\)</span>, which implies the unboundedness of the sparse operator <span>\\({{\\mathcal {A}}}_{{{\\mathcal {S}}}}\\)</span> on the Choquet space <span>\\({\\mathcal L}^p(H^d)\\)</span>, <span>\\(p>0\\)</span>. In this paper, the sparse operator <span>\\({\\mathcal A}_{{{\\mathcal {S}}}}\\)</span> is proved to map <span>\\({{\\mathcal {L}}}^p(H^d)\\)</span>, <span>\\(1\\le p<\\infty \\)</span>, into an associate space of the Orlicz-Morrey space <span>\\({{{\\mathcal {M}}}^{p'}_{\\Phi _0}(H^d)}'\\)</span>, <span>\\(\\Phi _0(t)=t\\log (e+t)\\)</span>. Further, another characterization of those associate spaces is given by means of the tiling <span>\\({{\\mathcal {T}}}\\)</span> of <span>\\({{\\mathbb {R}}}^n\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 3","pages":"311 - 324"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choquet integrals, Hausdorff content and sparse operators\",\"authors\":\"Naoya Hatano, Ryota Kawasumi, Hiroki Saito, Hitoshi Tanaka\",\"doi\":\"10.1007/s00013-024-02083-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H^d\\\\)</span>, <span>\\\\(0<d<n\\\\)</span>, be the dyadic Hausdorff content of the <i>n</i>-dimensional Euclidean space <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span>. It is shown that <span>\\\\(H^d\\\\)</span> counts a Cantor set of the unit cube <span>\\\\([0, 1)^n\\\\)</span> as <span>\\\\(\\\\approx 1\\\\)</span>, which implies the unboundedness of the sparse operator <span>\\\\({{\\\\mathcal {A}}}_{{{\\\\mathcal {S}}}}\\\\)</span> on the Choquet space <span>\\\\({\\\\mathcal L}^p(H^d)\\\\)</span>, <span>\\\\(p>0\\\\)</span>. In this paper, the sparse operator <span>\\\\({\\\\mathcal A}_{{{\\\\mathcal {S}}}}\\\\)</span> is proved to map <span>\\\\({{\\\\mathcal {L}}}^p(H^d)\\\\)</span>, <span>\\\\(1\\\\le p<\\\\infty \\\\)</span>, into an associate space of the Orlicz-Morrey space <span>\\\\({{{\\\\mathcal {M}}}^{p'}_{\\\\Phi _0}(H^d)}'\\\\)</span>, <span>\\\\(\\\\Phi _0(t)=t\\\\log (e+t)\\\\)</span>. Further, another characterization of those associate spaces is given by means of the tiling <span>\\\\({{\\\\mathcal {T}}}\\\\)</span> of <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 3\",\"pages\":\"311 - 324\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02083-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02083-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Choquet integrals, Hausdorff content and sparse operators
Let \(H^d\), \(0<d<n\), be the dyadic Hausdorff content of the n-dimensional Euclidean space \({{\mathbb {R}}}^n\). It is shown that \(H^d\) counts a Cantor set of the unit cube \([0, 1)^n\) as \(\approx 1\), which implies the unboundedness of the sparse operator \({{\mathcal {A}}}_{{{\mathcal {S}}}}\) on the Choquet space \({\mathcal L}^p(H^d)\), \(p>0\). In this paper, the sparse operator \({\mathcal A}_{{{\mathcal {S}}}}\) is proved to map \({{\mathcal {L}}}^p(H^d)\), \(1\le p<\infty \), into an associate space of the Orlicz-Morrey space \({{{\mathcal {M}}}^{p'}_{\Phi _0}(H^d)}'\), \(\Phi _0(t)=t\log (e+t)\). Further, another characterization of those associate spaces is given by means of the tiling \({{\mathcal {T}}}\) of \({{\mathbb {R}}}^n\).
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.