整数有理函数环的Krull维数

IF 0.5 4区 数学 Q3 MATHEMATICS
M. M. Chems-Eddin, B. Feryouch, H. Mouanis, A. Tamoussit
{"title":"整数有理函数环的Krull维数","authors":"M. M. Chems-Eddin,&nbsp;B. Feryouch,&nbsp;H. Mouanis,&nbsp;A. Tamoussit","doi":"10.1007/s00013-024-02086-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>D</i> be an integral domain with quotient field <i>K</i> and <i>E</i> a subset of <i>K</i>. The <i>ring of integer-valued rational functions on</i> <i>E</i> is defined as </p><div><div><span>$$\\begin{aligned} \\mathrm {Int^R}(E,D):=\\lbrace \\varphi \\in K(X);\\; \\varphi (E)\\subseteq D\\rbrace . \\end{aligned}$$</span></div></div><p>The main goal of this paper is to investigate the Krull dimension of the ring <span>\\(\\mathrm {Int^R}(E,D).\\)</span> Particularly, we are interested in domains that are either Jaffard or PVDs. Interesting results are established with some illustrating examples.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 3","pages":"243 - 254"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Krull dimension of rings of integer-valued rational functions\",\"authors\":\"M. M. Chems-Eddin,&nbsp;B. Feryouch,&nbsp;H. Mouanis,&nbsp;A. Tamoussit\",\"doi\":\"10.1007/s00013-024-02086-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>D</i> be an integral domain with quotient field <i>K</i> and <i>E</i> a subset of <i>K</i>. The <i>ring of integer-valued rational functions on</i> <i>E</i> is defined as </p><div><div><span>$$\\\\begin{aligned} \\\\mathrm {Int^R}(E,D):=\\\\lbrace \\\\varphi \\\\in K(X);\\\\; \\\\varphi (E)\\\\subseteq D\\\\rbrace . \\\\end{aligned}$$</span></div></div><p>The main goal of this paper is to investigate the Krull dimension of the ring <span>\\\\(\\\\mathrm {Int^R}(E,D).\\\\)</span> Particularly, we are interested in domains that are either Jaffard or PVDs. Interesting results are established with some illustrating examples.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 3\",\"pages\":\"243 - 254\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02086-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02086-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设D是一个有商域K的整域,E是K的子集,E上的整值有理函数环定义为$$\begin{aligned} \mathrm {Int^R}(E,D):=\lbrace \varphi \in K(X);\; \varphi (E)\subseteq D\rbrace . \end{aligned}$$本文的主要目的是研究环的Krull维\(\mathrm {Int^R}(E,D).\)特别地,我们对Jaffard或pvd的域感兴趣。通过一些实例,得到了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Krull dimension of rings of integer-valued rational functions

Let D be an integral domain with quotient field K and E a subset of K. The ring of integer-valued rational functions on E is defined as

$$\begin{aligned} \mathrm {Int^R}(E,D):=\lbrace \varphi \in K(X);\; \varphi (E)\subseteq D\rbrace . \end{aligned}$$

The main goal of this paper is to investigate the Krull dimension of the ring \(\mathrm {Int^R}(E,D).\) Particularly, we are interested in domains that are either Jaffard or PVDs. Interesting results are established with some illustrating examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信