{"title":"具有奇异爱因斯坦-麦克斯韦引力的反德西特黑洞的热力学相变","authors":"Hossein Ghaffarnejad, Elham Ghasemi","doi":"10.1007/s10714-025-03374-5","DOIUrl":null,"url":null,"abstract":"<div><p>To consider the inevitable cosmic magnetic effects instead of the unknown dark sector of matter/energy on the inflation phase of the expanding universe some authors have proposed several extended exotic Einstein–Maxwell gravities which are addressed in this work. Some of these exotic models include directional interaction terms between the electromagnetic vector field and the metric tensor field. We use one of them to investigate the physical effects of interaction terms on the thermodynamic behavior of the modified Reissner–Nordstrom (RN) black hole. We use the perturbation series method to find analytic solutions of the field equations because of the non-linearity of the field equations which cause they do not have analytic closed form solutions. We investigate possibility of the Hawking–Page and the small/large black hole phase transition and also, effects of the interaction part of the model on possibility of the coexistence of the several phases of the perturbed AdS RN black hole under consideration.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic phase transition of Anti-de Sitter Reissner–Nordström black holes with exotic Einstein–Maxwell gravities\",\"authors\":\"Hossein Ghaffarnejad, Elham Ghasemi\",\"doi\":\"10.1007/s10714-025-03374-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To consider the inevitable cosmic magnetic effects instead of the unknown dark sector of matter/energy on the inflation phase of the expanding universe some authors have proposed several extended exotic Einstein–Maxwell gravities which are addressed in this work. Some of these exotic models include directional interaction terms between the electromagnetic vector field and the metric tensor field. We use one of them to investigate the physical effects of interaction terms on the thermodynamic behavior of the modified Reissner–Nordstrom (RN) black hole. We use the perturbation series method to find analytic solutions of the field equations because of the non-linearity of the field equations which cause they do not have analytic closed form solutions. We investigate possibility of the Hawking–Page and the small/large black hole phase transition and also, effects of the interaction part of the model on possibility of the coexistence of the several phases of the perturbed AdS RN black hole under consideration.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03374-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03374-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Thermodynamic phase transition of Anti-de Sitter Reissner–Nordström black holes with exotic Einstein–Maxwell gravities
To consider the inevitable cosmic magnetic effects instead of the unknown dark sector of matter/energy on the inflation phase of the expanding universe some authors have proposed several extended exotic Einstein–Maxwell gravities which are addressed in this work. Some of these exotic models include directional interaction terms between the electromagnetic vector field and the metric tensor field. We use one of them to investigate the physical effects of interaction terms on the thermodynamic behavior of the modified Reissner–Nordstrom (RN) black hole. We use the perturbation series method to find analytic solutions of the field equations because of the non-linearity of the field equations which cause they do not have analytic closed form solutions. We investigate possibility of the Hawking–Page and the small/large black hole phase transition and also, effects of the interaction part of the model on possibility of the coexistence of the several phases of the perturbed AdS RN black hole under consideration.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.