广义非局部Hallaire-Luikov水分传递方程的存在唯一性结果

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Asim Ilyas, Salman A. Malik, Kamran Suhaib
{"title":"广义非局部Hallaire-Luikov水分传递方程的存在唯一性结果","authors":"Asim Ilyas,&nbsp;Salman A. Malik,&nbsp;Kamran Suhaib","doi":"10.1007/s10440-025-00712-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on inverse problem for Hallaire-Luikov moisture transfer equation involving Hilfer fractional derivative in time. Hallaire-Luikov equation is used to study heat and mass transfer in capillary-porous bodies. Spectral expansion method is used to find the solution of the inverse problem. By imposing certain conditions on the functions involved and utilizing certain properties of multinomial Mittag-Leffler function, it is shown that the solution to the equation, known as the inverse problem, is regular and unique. Moreover, the inverse problem exhibits ill-posedness in the sense of Hadamard. The article ends with an example to demonstrate these theoretical findings.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"195 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-025-00712-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Existence and Uniqueness Results for Generalized Non-local Hallaire-Luikov Moisture Transfer Equation\",\"authors\":\"Asim Ilyas,&nbsp;Salman A. Malik,&nbsp;Kamran Suhaib\",\"doi\":\"10.1007/s10440-025-00712-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article focuses on inverse problem for Hallaire-Luikov moisture transfer equation involving Hilfer fractional derivative in time. Hallaire-Luikov equation is used to study heat and mass transfer in capillary-porous bodies. Spectral expansion method is used to find the solution of the inverse problem. By imposing certain conditions on the functions involved and utilizing certain properties of multinomial Mittag-Leffler function, it is shown that the solution to the equation, known as the inverse problem, is regular and unique. Moreover, the inverse problem exhibits ill-posedness in the sense of Hadamard. The article ends with an example to demonstrate these theoretical findings.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-025-00712-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00712-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00712-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究含Hilfer分数阶导数的Hallaire-Luikov水分传递方程的逆问题。用Hallaire-Luikov方程研究了毛细管多孔体的传热传质问题。用谱展开法求逆问题的解。通过对所涉及的函数施加一定的条件,并利用多项Mittag-Leffler函数的某些性质,证明了该方程的解是正则且唯一的,即逆问题。此外,逆问题在Hadamard意义上表现出病态性。文章最后以一个例子来证明这些理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness Results for Generalized Non-local Hallaire-Luikov Moisture Transfer Equation

This article focuses on inverse problem for Hallaire-Luikov moisture transfer equation involving Hilfer fractional derivative in time. Hallaire-Luikov equation is used to study heat and mass transfer in capillary-porous bodies. Spectral expansion method is used to find the solution of the inverse problem. By imposing certain conditions on the functions involved and utilizing certain properties of multinomial Mittag-Leffler function, it is shown that the solution to the equation, known as the inverse problem, is regular and unique. Moreover, the inverse problem exhibits ill-posedness in the sense of Hadamard. The article ends with an example to demonstrate these theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信