SANSee:面向分布式无线传感的物理层语义感知网络框架

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huixiang Zhu;Yong Xiao;Yingyu Li;Guangming Shi;Marwan Krunz
{"title":"SANSee:面向分布式无线传感的物理层语义感知网络框架","authors":"Huixiang Zhu;Yong Xiao;Yingyu Li;Guangming Shi;Marwan Krunz","doi":"10.1109/TMC.2024.3483272","DOIUrl":null,"url":null,"abstract":"Contactless device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications using ubiquitously available radio frequency (RF) signals. Traditional approaches focus on developing a single global model based on a combined dataset collected from different locations. However, wireless signals are known to be location and environment specific. Thus, a global model results in inconsistent and unreliable sensing results. It is also unrealistic to construct individual models for all the possible locations and environmental scenarios. Motivated by the observation that signals recorded at different locations are closely related to a set of physical-layer semantic features, in this paper we propose SANSee, a semantic-aware networking-based framework for distributed wireless sensing. SANSee allows models constructed in one or a limited number of locations to be transferred to new locations without requiring any locally labeled data or model training. SANSee is built on the concept of physical-layer semantic-aware network (pSAN), which characterizes the semantic similarity and the correlations of sensed data across different locations. A pSAN-based zero-shot transfer learning solution is introduced to allow receivers in new locations to obtain location-specific models by directly aggregating the models trained by other receivers. We theoretically prove that models obtained by SANSee can approach the locally optimal models. Experimental results based on real-world datasets are used to verify that the accuracy of the transferred models obtained by SANSee matches that of the models trained by the locally labeled data based on supervised learning approaches.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"1636-1653"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SANSee: A Physical-Layer Semantic-Aware Networking Framework for Distributed Wireless Sensing\",\"authors\":\"Huixiang Zhu;Yong Xiao;Yingyu Li;Guangming Shi;Marwan Krunz\",\"doi\":\"10.1109/TMC.2024.3483272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contactless device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications using ubiquitously available radio frequency (RF) signals. Traditional approaches focus on developing a single global model based on a combined dataset collected from different locations. However, wireless signals are known to be location and environment specific. Thus, a global model results in inconsistent and unreliable sensing results. It is also unrealistic to construct individual models for all the possible locations and environmental scenarios. Motivated by the observation that signals recorded at different locations are closely related to a set of physical-layer semantic features, in this paper we propose SANSee, a semantic-aware networking-based framework for distributed wireless sensing. SANSee allows models constructed in one or a limited number of locations to be transferred to new locations without requiring any locally labeled data or model training. SANSee is built on the concept of physical-layer semantic-aware network (pSAN), which characterizes the semantic similarity and the correlations of sensed data across different locations. A pSAN-based zero-shot transfer learning solution is introduced to allow receivers in new locations to obtain location-specific models by directly aggregating the models trained by other receivers. We theoretically prove that models obtained by SANSee can approach the locally optimal models. Experimental results based on real-world datasets are used to verify that the accuracy of the transferred models obtained by SANSee matches that of the models trained by the locally labeled data based on supervised learning approaches.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 3\",\"pages\":\"1636-1653\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10721285/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10721285/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SANSee: A Physical-Layer Semantic-Aware Networking Framework for Distributed Wireless Sensing
Contactless device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications using ubiquitously available radio frequency (RF) signals. Traditional approaches focus on developing a single global model based on a combined dataset collected from different locations. However, wireless signals are known to be location and environment specific. Thus, a global model results in inconsistent and unreliable sensing results. It is also unrealistic to construct individual models for all the possible locations and environmental scenarios. Motivated by the observation that signals recorded at different locations are closely related to a set of physical-layer semantic features, in this paper we propose SANSee, a semantic-aware networking-based framework for distributed wireless sensing. SANSee allows models constructed in one or a limited number of locations to be transferred to new locations without requiring any locally labeled data or model training. SANSee is built on the concept of physical-layer semantic-aware network (pSAN), which characterizes the semantic similarity and the correlations of sensed data across different locations. A pSAN-based zero-shot transfer learning solution is introduced to allow receivers in new locations to obtain location-specific models by directly aggregating the models trained by other receivers. We theoretically prove that models obtained by SANSee can approach the locally optimal models. Experimental results based on real-world datasets are used to verify that the accuracy of the transferred models obtained by SANSee matches that of the models trained by the locally labeled data based on supervised learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信