基于 AHP-MCDM 的 WRSN 自适应移动充电器调度方案

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kondwani Makanda;Ammar Hawbani;Xingfu Wang;Abdulbary Naji;Ahmed Al-Dubai;Liang Zhao;Saeed Hamood Alsamhi
{"title":"基于 AHP-MCDM 的 WRSN 自适应移动充电器调度方案","authors":"Kondwani Makanda;Ammar Hawbani;Xingfu Wang;Abdulbary Naji;Ahmed Al-Dubai;Liang Zhao;Saeed Hamood Alsamhi","doi":"10.1109/TSUSC.2024.3391316","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are used to sense and monitor physical conditions in various services and applications. However, there are a number of challenges in deploying WSNs, especially those pertaining to energy replenishment. Using the current solutions, when a significant number of sensors need to replenish their energy, this would be costly in terms of time, efforts and resources. Thus, this paper aims to solve this problem by efficiently deploying wireless power transfer technologies and scheduling Mobile Charging Vehicles (MCVs) in WRSN. The proposed method deploys multi-criteria decision-making (i.e., Analytical Hierarchy Process (AHP)) to schedule the charging tasks. To the best of our knowledge, this paper is the first to depend solely on AHP in MCVs scheduling. The paper demonstrates the validity of the proposed method by illustrating that the matrices that are created are within the accepted values of consistency ratio. In addition, the paper proposes a method of partitioning the values of our criteria to avoid the problem of different criteria having different measurement units. Unlike existing works, the paper aims to schedule an MCV for charging based on both the distance and residual energy of the sensor. The proposed method exhibits superiority in terms of the average remaining energy available in the system, having the shortest queue length, shorter MCV response time, shorter charging duration, and shorter queue waiting time against the state-of-the-art methods. Our study paves the way for next generation efficient charging and MCV scheduling.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 1","pages":"57-69"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Mobile Chargers Scheduling Scheme Based on AHP-MCDM for WRSN\",\"authors\":\"Kondwani Makanda;Ammar Hawbani;Xingfu Wang;Abdulbary Naji;Ahmed Al-Dubai;Liang Zhao;Saeed Hamood Alsamhi\",\"doi\":\"10.1109/TSUSC.2024.3391316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) are used to sense and monitor physical conditions in various services and applications. However, there are a number of challenges in deploying WSNs, especially those pertaining to energy replenishment. Using the current solutions, when a significant number of sensors need to replenish their energy, this would be costly in terms of time, efforts and resources. Thus, this paper aims to solve this problem by efficiently deploying wireless power transfer technologies and scheduling Mobile Charging Vehicles (MCVs) in WRSN. The proposed method deploys multi-criteria decision-making (i.e., Analytical Hierarchy Process (AHP)) to schedule the charging tasks. To the best of our knowledge, this paper is the first to depend solely on AHP in MCVs scheduling. The paper demonstrates the validity of the proposed method by illustrating that the matrices that are created are within the accepted values of consistency ratio. In addition, the paper proposes a method of partitioning the values of our criteria to avoid the problem of different criteria having different measurement units. Unlike existing works, the paper aims to schedule an MCV for charging based on both the distance and residual energy of the sensor. The proposed method exhibits superiority in terms of the average remaining energy available in the system, having the shortest queue length, shorter MCV response time, shorter charging duration, and shorter queue waiting time against the state-of-the-art methods. Our study paves the way for next generation efficient charging and MCV scheduling.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 1\",\"pages\":\"57-69\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505737/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10505737/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Mobile Chargers Scheduling Scheme Based on AHP-MCDM for WRSN
Wireless Sensor Networks (WSNs) are used to sense and monitor physical conditions in various services and applications. However, there are a number of challenges in deploying WSNs, especially those pertaining to energy replenishment. Using the current solutions, when a significant number of sensors need to replenish their energy, this would be costly in terms of time, efforts and resources. Thus, this paper aims to solve this problem by efficiently deploying wireless power transfer technologies and scheduling Mobile Charging Vehicles (MCVs) in WRSN. The proposed method deploys multi-criteria decision-making (i.e., Analytical Hierarchy Process (AHP)) to schedule the charging tasks. To the best of our knowledge, this paper is the first to depend solely on AHP in MCVs scheduling. The paper demonstrates the validity of the proposed method by illustrating that the matrices that are created are within the accepted values of consistency ratio. In addition, the paper proposes a method of partitioning the values of our criteria to avoid the problem of different criteria having different measurement units. Unlike existing works, the paper aims to schedule an MCV for charging based on both the distance and residual energy of the sensor. The proposed method exhibits superiority in terms of the average remaining energy available in the system, having the shortest queue length, shorter MCV response time, shorter charging duration, and shorter queue waiting time against the state-of-the-art methods. Our study paves the way for next generation efficient charging and MCV scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信