IF 6.3 Q1 AGRICULTURAL ENGINEERING
Alia Khalid , Muhammad Latif Anjum , Salman Naveed , Wajahat Hussain
{"title":"Whispers in the air: Designing acoustic classifiers to detect fruit flies from afar","authors":"Alia Khalid ,&nbsp;Muhammad Latif Anjum ,&nbsp;Salman Naveed ,&nbsp;Wajahat Hussain","doi":"10.1016/j.atech.2024.100738","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting weak wingbeats of a flying bug is a challenging problem in uncontrolled outdoor settings. In this work, we show that proper treatment of environmental noise is a key factor in robust acoustic classifier design and propose a novel environmental noise treatment method. Our proposed method generalizes over different classifiers and features. Our algorithm provides robust detection and classification of multiple bugs, over longest ranges reported, using simple microphones. In order to benchmark research in this area, we release a novel dataset containing acoustic data of four bugs (Guava fly, Melon fly, Blue bottle fly, and mosquitoes). We additionally investigate the feasibility of deploying our acoustic classifier on a noisy mobile platform, i.e., a drone. To this end, we expose the limitations of signal processing techniques to deal with loud drone noise. We demonstrate how soundproofing can be used to design acoustic sensing for drones.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100738"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524003423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在不受控制的户外环境中,检测飞虫的微弱振翅声是一个具有挑战性的问题。在这项工作中,我们证明了适当处理环境噪声是设计稳健声学分类器的关键因素,并提出了一种新颖的环境噪声处理方法。我们提出的方法适用于不同的分类器和特征。我们的算法使用简单的麦克风就能在报告的最长范围内对多个窃听器进行稳健的检测和分类。为了确定该领域的研究基准,我们发布了一个新数据集,其中包含四种虫子(番石榴蝇、瓜蝇、蓝瓶蝇和蚊子)的声学数据。此外,我们还研究了在嘈杂的移动平台(即无人机)上部署声学分类器的可行性。为此,我们揭示了信号处理技术在处理嘈杂的无人机噪音方面的局限性。我们展示了如何利用隔音技术来设计无人机的声学传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Whispers in the air: Designing acoustic classifiers to detect fruit flies from afar

Whispers in the air: Designing acoustic classifiers to detect fruit flies from afar
Detecting weak wingbeats of a flying bug is a challenging problem in uncontrolled outdoor settings. In this work, we show that proper treatment of environmental noise is a key factor in robust acoustic classifier design and propose a novel environmental noise treatment method. Our proposed method generalizes over different classifiers and features. Our algorithm provides robust detection and classification of multiple bugs, over longest ranges reported, using simple microphones. In order to benchmark research in this area, we release a novel dataset containing acoustic data of four bugs (Guava fly, Melon fly, Blue bottle fly, and mosquitoes). We additionally investigate the feasibility of deploying our acoustic classifier on a noisy mobile platform, i.e., a drone. To this end, we expose the limitations of signal processing techniques to deal with loud drone noise. We demonstrate how soundproofing can be used to design acoustic sensing for drones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信