定向退火对 γ-TiAl 合金微观结构和 900 °C 拉伸性能的影响

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zedong Liu, Jieren Yang, Yunlu Ma, Jinwen Ye, Ying Liu
{"title":"定向退火对 γ-TiAl 合金微观结构和 900 °C 拉伸性能的影响","authors":"Zedong Liu,&nbsp;Jieren Yang,&nbsp;Yunlu Ma,&nbsp;Jinwen Ye,&nbsp;Ying Liu","doi":"10.1016/j.intermet.2025.108648","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of columnar and equiaxed microstructures of γ-TiAl alloy on tensile properties at 900 °C, as well as the corresponding high-temperature deformation microstructure. The characterization of twin and dislocation morphologies is conducted using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The dislocation and twinning behavior of γ<sub>M</sub> and γ<sub>L</sub> following high-temperature stretching is the primary focus of this investigation. The findings reveal that the columnar structure, characterized by reduced transverse grain boundaries, demonstrates enhanced high-temperature performance during the tensile process at 900 °C. This results in improved high-temperature strength and greater capacity for permanent deformation after necking. During high-temperature deformation, γ<sub>M</sub> forms dislocation walls comprising <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> superdislocations and triggers numerous &lt;110] true twins, potentially originating from the dissociation of <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> stacking faults. Concurrently, a broad spectrum of dislocation cross-slip activities is observed in γ<sub>L</sub>, involving <span><math><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mrow><mo>⟨</mo><mn>1</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow></math></span> ordinary dislocations, as well as <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> and <span><math><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mrow><mo>⟨</mo><mn>1</mn></mrow><mn>1</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow></math></span> superdislocations, along with some &lt;011] true twins in γ<sub>L</sub> facilitating additional strain adjustment. Furthermore, the study identifies that micro-holes and micro-cracks tend to develop at the interface of γ<sub>M</sub> and the interface of (α<sub>2</sub>+γ) lamellar colonies. These results offer valuable insights for enhancing the comprehension of the benefits associated with the high-temperature mechanical properties of α columnar crystal structures characterized by a high aspect ratio, as well as the alterations in micro/nano structures that occur during high-temperature deformation.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"179 ","pages":"Article 108648"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of directional annealing on the microstructure and 900 °C tensile properties of γ-TiAl alloy\",\"authors\":\"Zedong Liu,&nbsp;Jieren Yang,&nbsp;Yunlu Ma,&nbsp;Jinwen Ye,&nbsp;Ying Liu\",\"doi\":\"10.1016/j.intermet.2025.108648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of columnar and equiaxed microstructures of γ-TiAl alloy on tensile properties at 900 °C, as well as the corresponding high-temperature deformation microstructure. The characterization of twin and dislocation morphologies is conducted using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The dislocation and twinning behavior of γ<sub>M</sub> and γ<sub>L</sub> following high-temperature stretching is the primary focus of this investigation. The findings reveal that the columnar structure, characterized by reduced transverse grain boundaries, demonstrates enhanced high-temperature performance during the tensile process at 900 °C. This results in improved high-temperature strength and greater capacity for permanent deformation after necking. During high-temperature deformation, γ<sub>M</sub> forms dislocation walls comprising <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> superdislocations and triggers numerous &lt;110] true twins, potentially originating from the dissociation of <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> stacking faults. Concurrently, a broad spectrum of dislocation cross-slip activities is observed in γ<sub>L</sub>, involving <span><math><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mrow><mo>⟨</mo><mn>1</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow></math></span> ordinary dislocations, as well as <span><math><mrow><mrow><mrow><mo>⟨</mo><mn>0</mn></mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow></math></span> and <span><math><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mrow><mo>⟨</mo><mn>1</mn></mrow><mn>1</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow></math></span> superdislocations, along with some &lt;011] true twins in γ<sub>L</sub> facilitating additional strain adjustment. Furthermore, the study identifies that micro-holes and micro-cracks tend to develop at the interface of γ<sub>M</sub> and the interface of (α<sub>2</sub>+γ) lamellar colonies. These results offer valuable insights for enhancing the comprehension of the benefits associated with the high-temperature mechanical properties of α columnar crystal structures characterized by a high aspect ratio, as well as the alterations in micro/nano structures that occur during high-temperature deformation.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"179 \",\"pages\":\"Article 108648\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525000135\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了γ-TiAl 合金的柱状和等轴状微结构对 900 °C 拉伸性能的影响,以及相应的高温变形微结构。利用扫描电子显微镜(SEM)、电子反向散射衍射(EBSD)和透射电子显微镜(TEM)对孪晶和位错形态进行了表征。本次研究的重点是高温拉伸后 γM 和 γL 的位错和孪生行为。研究结果表明,在 900 °C 的拉伸过程中,以横向晶界减少为特征的柱状结构表现出更强的高温性能。这不仅提高了高温强度,还增强了缩颈后的永久变形能力。在高温变形过程中,γM 形成了由⟨01‾1] 超位错组成的位错壁,并引发了许多 <110] 真孪晶,这可能源于⟨01‾1] 堆积断层的解离。同时,在γL中观察到广泛的位错交叉滑动活动,涉及1/2⟨11‾0] 普通位错,以及⟨01‾1] 和1/2⟨112‾] 超位错,同时γL中的一些<011] 真孪晶促进了额外的应变调整。此外,研究还发现,微孔和微裂缝往往出现在 γM 的界面和 (α2+γ) 片状菌落的界面上。这些结果提供了宝贵的见解,有助于人们更好地理解以高宽比为特征的 α 柱状晶体结构的高温力学性能带来的益处,以及高温变形过程中发生的微/纳米结构变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of directional annealing on the microstructure and 900 °C tensile properties of γ-TiAl alloy
This study investigates the impact of columnar and equiaxed microstructures of γ-TiAl alloy on tensile properties at 900 °C, as well as the corresponding high-temperature deformation microstructure. The characterization of twin and dislocation morphologies is conducted using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The dislocation and twinning behavior of γM and γL following high-temperature stretching is the primary focus of this investigation. The findings reveal that the columnar structure, characterized by reduced transverse grain boundaries, demonstrates enhanced high-temperature performance during the tensile process at 900 °C. This results in improved high-temperature strength and greater capacity for permanent deformation after necking. During high-temperature deformation, γM forms dislocation walls comprising 011] superdislocations and triggers numerous <110] true twins, potentially originating from the dissociation of 011] stacking faults. Concurrently, a broad spectrum of dislocation cross-slip activities is observed in γL, involving 1/2110] ordinary dislocations, as well as 011] and 1/2112] superdislocations, along with some <011] true twins in γL facilitating additional strain adjustment. Furthermore, the study identifies that micro-holes and micro-cracks tend to develop at the interface of γM and the interface of (α2+γ) lamellar colonies. These results offer valuable insights for enhancing the comprehension of the benefits associated with the high-temperature mechanical properties of α columnar crystal structures characterized by a high aspect ratio, as well as the alterations in micro/nano structures that occur during high-temperature deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信