SPINEX-TimeSeries:针对时间序列和预测问题的基于相似性的预测与可解释邻域探索

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ahmad Z. Naser , M.Z. Naser
{"title":"SPINEX-TimeSeries:针对时间序列和预测问题的基于相似性的预测与可解释邻域探索","authors":"Ahmad Z. Naser ,&nbsp;M.Z. Naser","doi":"10.1016/j.cie.2024.110812","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This new algorithm leverages the concept of similarity and higher-order temporal interactions across multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends, seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5 performers in forecasting precision and has a superior ability to handle complex temporal dynamics compared to commonly adopted algorithms. Moreover, the algorithm’s explainability features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated through detailed visualizations to enhance the prediction and decision-making process. We note that integrating similarity-based concepts opens new avenues for research in predictive analytics, promising more accurate and transparent decision making.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110812"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems\",\"authors\":\"Ahmad Z. Naser ,&nbsp;M.Z. Naser\",\"doi\":\"10.1016/j.cie.2024.110812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This new algorithm leverages the concept of similarity and higher-order temporal interactions across multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends, seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5 performers in forecasting precision and has a superior ability to handle complex temporal dynamics compared to commonly adopted algorithms. Moreover, the algorithm’s explainability features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated through detailed visualizations to enhance the prediction and decision-making process. We note that integrating similarity-based concepts opens new avenues for research in predictive analytics, promising more accurate and transparent decision making.</div></div>\",\"PeriodicalId\":55220,\"journal\":{\"name\":\"Computers & Industrial Engineering\",\"volume\":\"200 \",\"pages\":\"Article 110812\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360835224009343\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224009343","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems
This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This new algorithm leverages the concept of similarity and higher-order temporal interactions across multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends, seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5 performers in forecasting precision and has a superior ability to handle complex temporal dynamics compared to commonly adopted algorithms. Moreover, the algorithm’s explainability features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated through detailed visualizations to enhance the prediction and decision-making process. We note that integrating similarity-based concepts opens new avenues for research in predictive analytics, promising more accurate and transparent decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信