非羧化骨钙素诱导的 miR-143-3p 在 TNBC 细胞中靶向 SP7 并激活 PI3K/Akt 信号,从而促进侵袭和迁移

IF 5 2区 医学 Q2 Medicine
Qian Du, Jiaojiao Xu, Miao Zhang, Jianhong Yang
{"title":"非羧化骨钙素诱导的 miR-143-3p 在 TNBC 细胞中靶向 SP7 并激活 PI3K/Akt 信号,从而促进侵袭和迁移","authors":"Qian Du,&nbsp;Jiaojiao Xu,&nbsp;Miao Zhang,&nbsp;Jianhong Yang","doi":"10.1016/j.tranon.2025.102305","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) is an exceptionally aggressive malignancy with poor prognosis. Patients often have elevated mortality and recurrence rates, along with a pronounced risk of distant metastasis. Our earlier research highlighted the role of uncarboxylated osteocalcin (GluOC) in fueling TNBC cell proliferation and metastasis; however the molecular underpinnings of its impact on cancer invasion and migration remain enigmatic. In this study, we identified miR-143-3p as a significantly downregulated miRNA following GluOC treatment in TNBC cells. Notably, increased miR-143-3p has been linked to more favorable clinical outcomes in patients with TNBC. miR-143-3p expression has been shown to target and repress the expression of SP7. Furthermore, our findings indicate that GluOC modulates the miR-143-3p/PI3K/Akt signaling pathway, which in turn fosters the invasive and migratory capabilities of TNBC cells. In a xenograft animal model, we observed that the administration of GluOC led to a marked enhancement in tumor growth. Conversely, the delivery of miR-143-3p agomir was associated with a notable reduction in tumor growth. Notably, concurrent administration of miR-143-3p agomir and GluOC partially abrogated the tumorigenic effects induced by GluOC alone. Furthermore, GluOC downregulated the expression of miR-143-3p. Our study findings indicate that GluOC plays a role in the invasion and migration of TNBC cells by regulating the miR-143-3p/SP7 and miR-143-3p/PI3K/Akt axes. These insights suggest that GluOC and miR-143-3p are integral to the invasive and migratory processes of TNBC cells and may serve as promising targets for therapeutic interventions in TNBC.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"53 ","pages":"Article 102305"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncarboxylated osteocalcin induced miR-143-3p targets SP7 and activates PI3K/Akt signaling in TNBC cells to promote invasion and migration\",\"authors\":\"Qian Du,&nbsp;Jiaojiao Xu,&nbsp;Miao Zhang,&nbsp;Jianhong Yang\",\"doi\":\"10.1016/j.tranon.2025.102305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Triple-negative breast cancer (TNBC) is an exceptionally aggressive malignancy with poor prognosis. Patients often have elevated mortality and recurrence rates, along with a pronounced risk of distant metastasis. Our earlier research highlighted the role of uncarboxylated osteocalcin (GluOC) in fueling TNBC cell proliferation and metastasis; however the molecular underpinnings of its impact on cancer invasion and migration remain enigmatic. In this study, we identified miR-143-3p as a significantly downregulated miRNA following GluOC treatment in TNBC cells. Notably, increased miR-143-3p has been linked to more favorable clinical outcomes in patients with TNBC. miR-143-3p expression has been shown to target and repress the expression of SP7. Furthermore, our findings indicate that GluOC modulates the miR-143-3p/PI3K/Akt signaling pathway, which in turn fosters the invasive and migratory capabilities of TNBC cells. In a xenograft animal model, we observed that the administration of GluOC led to a marked enhancement in tumor growth. Conversely, the delivery of miR-143-3p agomir was associated with a notable reduction in tumor growth. Notably, concurrent administration of miR-143-3p agomir and GluOC partially abrogated the tumorigenic effects induced by GluOC alone. Furthermore, GluOC downregulated the expression of miR-143-3p. Our study findings indicate that GluOC plays a role in the invasion and migration of TNBC cells by regulating the miR-143-3p/SP7 and miR-143-3p/PI3K/Akt axes. These insights suggest that GluOC and miR-143-3p are integral to the invasive and migratory processes of TNBC cells and may serve as promising targets for therapeutic interventions in TNBC.</div></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"53 \",\"pages\":\"Article 102305\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1936523325000361\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000361","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncarboxylated osteocalcin induced miR-143-3p targets SP7 and activates PI3K/Akt signaling in TNBC cells to promote invasion and migration
Triple-negative breast cancer (TNBC) is an exceptionally aggressive malignancy with poor prognosis. Patients often have elevated mortality and recurrence rates, along with a pronounced risk of distant metastasis. Our earlier research highlighted the role of uncarboxylated osteocalcin (GluOC) in fueling TNBC cell proliferation and metastasis; however the molecular underpinnings of its impact on cancer invasion and migration remain enigmatic. In this study, we identified miR-143-3p as a significantly downregulated miRNA following GluOC treatment in TNBC cells. Notably, increased miR-143-3p has been linked to more favorable clinical outcomes in patients with TNBC. miR-143-3p expression has been shown to target and repress the expression of SP7. Furthermore, our findings indicate that GluOC modulates the miR-143-3p/PI3K/Akt signaling pathway, which in turn fosters the invasive and migratory capabilities of TNBC cells. In a xenograft animal model, we observed that the administration of GluOC led to a marked enhancement in tumor growth. Conversely, the delivery of miR-143-3p agomir was associated with a notable reduction in tumor growth. Notably, concurrent administration of miR-143-3p agomir and GluOC partially abrogated the tumorigenic effects induced by GluOC alone. Furthermore, GluOC downregulated the expression of miR-143-3p. Our study findings indicate that GluOC plays a role in the invasion and migration of TNBC cells by regulating the miR-143-3p/SP7 and miR-143-3p/PI3K/Akt axes. These insights suggest that GluOC and miR-143-3p are integral to the invasive and migratory processes of TNBC cells and may serve as promising targets for therapeutic interventions in TNBC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
2.00%
发文量
314
审稿时长
54 days
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信