在新型无钴共晶高熵合金中实现高强度和大延展性的双相层状结构

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Cong Peng , Yuanping Yuan , Qingqing Pei , Shuai Xu , Yong Xu , Quan Zhou , Ganggang Ma , Peidong Huang , Xiangkui Liu
{"title":"在新型无钴共晶高熵合金中实现高强度和大延展性的双相层状结构","authors":"Cong Peng ,&nbsp;Yuanping Yuan ,&nbsp;Qingqing Pei ,&nbsp;Shuai Xu ,&nbsp;Yong Xu ,&nbsp;Quan Zhou ,&nbsp;Ganggang Ma ,&nbsp;Peidong Huang ,&nbsp;Xiangkui Liu","doi":"10.1016/j.intermet.2025.108669","DOIUrl":null,"url":null,"abstract":"<div><div>The design of high-performance eutectic high-entropy alloy (EHEA) is still a huge challenging in material fields. Here, we designed a dual-phase Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> eutectic high-entropy alloy that can be prepared by directly cast methods. The as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA comprises of alternating soft FCC/L1<sub>2</sub> and hard B2 nanolamellae, which is enriched in Fe, V, Cr elements and Ni, Al elements, respectively. Furthermore, a classical K-S orientation relationship can be established between FCC and B2 phases. Superior mechanical properties, i.e., a high yield strength of ∼790 MPa, an ultimate tensile strength of ∼1230 MPa and a large uniform elongation of ∼16.5 %, can be achieved in the as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA. Such excellent combination of high strength and ductility in the as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA mainly originates from the strong interaction of high-density dislocations in both FCC/L1<sub>2</sub> and B2 nanolamellae. Specifically, high-density dislocations can be effectively hindered by the phase interface between soft FCC and hard B2 lamellae, contributing a high strength. Moreover, dense L1<sub>2</sub> nanoprecipitates can also impede the slipping of profuse dislocations in the FCC nanolamellae, significantly enhancing the mechanical properties of the Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA. The result in this work provides a strong theoretical guidance for the alloy design of high-performance metals.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"179 ","pages":"Article 108669"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-phase lamellar structure achieving high strength and large ductility in a novel Co-free eutectic high-entropy alloy\",\"authors\":\"Cong Peng ,&nbsp;Yuanping Yuan ,&nbsp;Qingqing Pei ,&nbsp;Shuai Xu ,&nbsp;Yong Xu ,&nbsp;Quan Zhou ,&nbsp;Ganggang Ma ,&nbsp;Peidong Huang ,&nbsp;Xiangkui Liu\",\"doi\":\"10.1016/j.intermet.2025.108669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of high-performance eutectic high-entropy alloy (EHEA) is still a huge challenging in material fields. Here, we designed a dual-phase Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> eutectic high-entropy alloy that can be prepared by directly cast methods. The as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA comprises of alternating soft FCC/L1<sub>2</sub> and hard B2 nanolamellae, which is enriched in Fe, V, Cr elements and Ni, Al elements, respectively. Furthermore, a classical K-S orientation relationship can be established between FCC and B2 phases. Superior mechanical properties, i.e., a high yield strength of ∼790 MPa, an ultimate tensile strength of ∼1230 MPa and a large uniform elongation of ∼16.5 %, can be achieved in the as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA. Such excellent combination of high strength and ductility in the as-cast Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA mainly originates from the strong interaction of high-density dislocations in both FCC/L1<sub>2</sub> and B2 nanolamellae. Specifically, high-density dislocations can be effectively hindered by the phase interface between soft FCC and hard B2 lamellae, contributing a high strength. Moreover, dense L1<sub>2</sub> nanoprecipitates can also impede the slipping of profuse dislocations in the FCC nanolamellae, significantly enhancing the mechanical properties of the Ni<sub>49</sub>Fe<sub>20</sub>Al<sub>17</sub>Cr<sub>8</sub>V<sub>6</sub> EHEA. The result in this work provides a strong theoretical guidance for the alloy design of high-performance metals.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"179 \",\"pages\":\"Article 108669\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525000342\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高性能共晶高熵合金(EHEA)的设计仍然是材料领域的巨大挑战。在此,我们设计了一种可通过直接铸造方法制备的双相 Ni49Fe20Al17Cr8V6 共晶高熵合金。铸造后的 Ni49Fe20Al17Cr8V6 EHEA 由软质 FCC/L12 和硬质 B2 纳米晶交替组成,分别富含铁、钒、铬元素和镍、铝元素。此外,FCC 和 B2 相之间还可以建立经典的 K-S 取向关系。铸造后的 Ni49Fe20Al17Cr8V6 EHEA 具有优异的机械性能,即屈服强度高达 790 兆帕,极限拉伸强度高达 1230 兆帕,均匀伸长率高达 16.5%。铸态 Ni49Fe20Al17Cr8V6 EHEA 高强度和延展性的完美结合主要源于 FCC/L12 和 B2 纳米小室中高密度位错的强相互作用。具体来说,高密度位错可有效地受到软 FCC 和硬 B2 薄片之间相界面的阻碍,从而产生高强度。此外,致密的 L12 纳米沉淀物还能阻碍 FCC 纳米薄片中大量位错的滑动,从而显著提高 Ni49Fe20Al17Cr8V6 EHEA 的机械性能。这项研究成果为高性能金属的合金设计提供了有力的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-phase lamellar structure achieving high strength and large ductility in a novel Co-free eutectic high-entropy alloy

Dual-phase lamellar structure achieving high strength and large ductility in a novel Co-free eutectic high-entropy alloy
The design of high-performance eutectic high-entropy alloy (EHEA) is still a huge challenging in material fields. Here, we designed a dual-phase Ni49Fe20Al17Cr8V6 eutectic high-entropy alloy that can be prepared by directly cast methods. The as-cast Ni49Fe20Al17Cr8V6 EHEA comprises of alternating soft FCC/L12 and hard B2 nanolamellae, which is enriched in Fe, V, Cr elements and Ni, Al elements, respectively. Furthermore, a classical K-S orientation relationship can be established between FCC and B2 phases. Superior mechanical properties, i.e., a high yield strength of ∼790 MPa, an ultimate tensile strength of ∼1230 MPa and a large uniform elongation of ∼16.5 %, can be achieved in the as-cast Ni49Fe20Al17Cr8V6 EHEA. Such excellent combination of high strength and ductility in the as-cast Ni49Fe20Al17Cr8V6 EHEA mainly originates from the strong interaction of high-density dislocations in both FCC/L12 and B2 nanolamellae. Specifically, high-density dislocations can be effectively hindered by the phase interface between soft FCC and hard B2 lamellae, contributing a high strength. Moreover, dense L12 nanoprecipitates can also impede the slipping of profuse dislocations in the FCC nanolamellae, significantly enhancing the mechanical properties of the Ni49Fe20Al17Cr8V6 EHEA. The result in this work provides a strong theoretical guidance for the alloy design of high-performance metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信