{"title":"优化依鲁替尼的生物利用度:羟丙基-β-环糊精纳米海绵给药系统的配方和评估","authors":"Sunitha Sampathi , Nitiraj Kulkarni , D.V.R.N. Bhikshapathi , Jagadish V. Tawade , Nainaru Tarakaramu , Rzgar Farooq Rashid , Aziz Kubaev","doi":"10.1016/j.crphar.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The current research aims to improve the oral bioavailability of ibrutinib (IBR), a class II drug with low solubility, through the formulation of nanosponges (NSPs) that incorporate IBR, utilizing Hydroxypropyl β-cyclodextrin (HPβCD) and 1,1′-carbonyldiimidazole (CDI) as cross-linking agent.</div></div><div><h3>Methods</h3><div>IBR-loaded HPβCD-NSPs were formulated by optimizing the molar proportion of HPβCD to CDI, as well as stirring rate and duration using a design-based methodology. The synthesized nanoparticles (NSPs) were examined for size, potential, and entrapment of drug. Characterization was performed by X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC), to assess compatibility. Permeability studies were conducted, followed by in vitro and in vivo assessments.</div></div><div><h3>Results</h3><div>The optimized IBR-loaded HPβCD NSPs demonstrated a mean particle size of 145.6 ± 6.8 nm, a PDI of 0.170 ± 0.036, and an EE of 71.04 ± 2.40%. Further validation through zeta sizing, microscopic and spectral analysis, release studies, and pharmacokinetic assessments confirmed the optimization. The HPβCD NSPs demonstrated 14.96 times higher AUC0-t (area under the curve) with a Cmax increase of 6.45 times compared to the free drug, indicating a substantial improvement in bioavailability.</div></div><div><h3>Conclusion</h3><div>IBR-loaded HPβCD NSPs offer a promising strategy for improved drug release and bioavailability, which could significantly benefit melanoma treatment.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"8 ","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems\",\"authors\":\"Sunitha Sampathi , Nitiraj Kulkarni , D.V.R.N. Bhikshapathi , Jagadish V. Tawade , Nainaru Tarakaramu , Rzgar Farooq Rashid , Aziz Kubaev\",\"doi\":\"10.1016/j.crphar.2025.100213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The current research aims to improve the oral bioavailability of ibrutinib (IBR), a class II drug with low solubility, through the formulation of nanosponges (NSPs) that incorporate IBR, utilizing Hydroxypropyl β-cyclodextrin (HPβCD) and 1,1′-carbonyldiimidazole (CDI) as cross-linking agent.</div></div><div><h3>Methods</h3><div>IBR-loaded HPβCD-NSPs were formulated by optimizing the molar proportion of HPβCD to CDI, as well as stirring rate and duration using a design-based methodology. The synthesized nanoparticles (NSPs) were examined for size, potential, and entrapment of drug. Characterization was performed by X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC), to assess compatibility. Permeability studies were conducted, followed by in vitro and in vivo assessments.</div></div><div><h3>Results</h3><div>The optimized IBR-loaded HPβCD NSPs demonstrated a mean particle size of 145.6 ± 6.8 nm, a PDI of 0.170 ± 0.036, and an EE of 71.04 ± 2.40%. Further validation through zeta sizing, microscopic and spectral analysis, release studies, and pharmacokinetic assessments confirmed the optimization. The HPβCD NSPs demonstrated 14.96 times higher AUC0-t (area under the curve) with a Cmax increase of 6.45 times compared to the free drug, indicating a substantial improvement in bioavailability.</div></div><div><h3>Conclusion</h3><div>IBR-loaded HPβCD NSPs offer a promising strategy for improved drug release and bioavailability, which could significantly benefit melanoma treatment.</div></div>\",\"PeriodicalId\":10877,\"journal\":{\"name\":\"Current Research in Pharmacology and Drug Discovery\",\"volume\":\"8 \",\"pages\":\"Article 100213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Pharmacology and Drug Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259025712500001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmacology and Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259025712500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Optimizing ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems
Background
The current research aims to improve the oral bioavailability of ibrutinib (IBR), a class II drug with low solubility, through the formulation of nanosponges (NSPs) that incorporate IBR, utilizing Hydroxypropyl β-cyclodextrin (HPβCD) and 1,1′-carbonyldiimidazole (CDI) as cross-linking agent.
Methods
IBR-loaded HPβCD-NSPs were formulated by optimizing the molar proportion of HPβCD to CDI, as well as stirring rate and duration using a design-based methodology. The synthesized nanoparticles (NSPs) were examined for size, potential, and entrapment of drug. Characterization was performed by X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC), to assess compatibility. Permeability studies were conducted, followed by in vitro and in vivo assessments.
Results
The optimized IBR-loaded HPβCD NSPs demonstrated a mean particle size of 145.6 ± 6.8 nm, a PDI of 0.170 ± 0.036, and an EE of 71.04 ± 2.40%. Further validation through zeta sizing, microscopic and spectral analysis, release studies, and pharmacokinetic assessments confirmed the optimization. The HPβCD NSPs demonstrated 14.96 times higher AUC0-t (area under the curve) with a Cmax increase of 6.45 times compared to the free drug, indicating a substantial improvement in bioavailability.
Conclusion
IBR-loaded HPβCD NSPs offer a promising strategy for improved drug release and bioavailability, which could significantly benefit melanoma treatment.