Md. Alif Sheakh , Sami Azam , Mst. Sazia Tahosin , Asif Karim , Sidratul Montaha , Kayes Uddin Fahim , Niusha Shafiabady , Mirjam Jonkman , Friso De Boer
{"title":"ECgMLP: A novel gated MLP model for enhanced endometrial cancer diagnosis","authors":"Md. Alif Sheakh ,&nbsp;Sami Azam ,&nbsp;Mst. Sazia Tahosin ,&nbsp;Asif Karim ,&nbsp;Sidratul Montaha ,&nbsp;Kayes Uddin Fahim ,&nbsp;Niusha Shafiabady ,&nbsp;Mirjam Jonkman ,&nbsp;Friso De Boer","doi":"10.1016/j.cmpbup.2025.100181","DOIUrl":null,"url":null,"abstract":"<div><div>Endometrial cancеr is the fourth fastеst-growing cancеr among women worldwide, affecting the uterus's lining. This research proposes a novel approach called ECgMLP for the automated diagnosis of endometrial cancer by analyzing histopathological images. Several preprocessing techniques are employed to increase the quality of the images, including normalization, Non-Local Means denoising, and alpha-beta enhancement. Effective segmentation is achieved through a combination of Otsu thresholding, morphological operations, distance transformations, and the watershed approach to identify major regions of interest. Through a sequence of blocks, the ECgMLP architecture processes input images to remove unimportant patterns. Model hyperparameters are improved via ablation research. The evaluations show a maximum accuracy of 99.26 % for identifying multi-class histopathological categories of endometrial tissue, which is higher than the previous best technique. The proposed model offers an automated, correct diagnosis, enhancing clinical processes. This proposition could be added to the current tools for finding endometrial cancer early, leading to better patient outcomes.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜癌是全球妇女中生长速度第四快的癌症,主要影响子宫内膜。这项研究提出了一种名为 ECgMLP 的新方法,用于通过分析组织病理学图像自动诊断子宫内膜癌。该方法采用了多种预处理技术来提高图像质量,包括归一化、非局部均值去噪和α-β增强。通过结合大津阈值、形态学运算、距离变换和分水岭方法来识别主要感兴趣区,从而实现有效的分割。通过一系列块,ECgMLP 架构处理输入图像以去除不重要的模式。通过消融研究改进了模型超参数。评估结果显示,识别子宫内膜组织多类组织病理学类别的最高准确率为 99.26%,高于之前的最佳技术。所提出的模型可提供自动、正确的诊断,从而改善临床过程。这一建议可被添加到现有的早期发现子宫内膜癌的工具中,从而为患者带来更好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECgMLP: A novel gated MLP model for enhanced endometrial cancer diagnosis
Endometrial cancеr is the fourth fastеst-growing cancеr among women worldwide, affecting the uterus's lining. This research proposes a novel approach called ECgMLP for the automated diagnosis of endometrial cancer by analyzing histopathological images. Several preprocessing techniques are employed to increase the quality of the images, including normalization, Non-Local Means denoising, and alpha-beta enhancement. Effective segmentation is achieved through a combination of Otsu thresholding, morphological operations, distance transformations, and the watershed approach to identify major regions of interest. Through a sequence of blocks, the ECgMLP architecture processes input images to remove unimportant patterns. Model hyperparameters are improved via ablation research. The evaluations show a maximum accuracy of 99.26 % for identifying multi-class histopathological categories of endometrial tissue, which is higher than the previous best technique. The proposed model offers an automated, correct diagnosis, enhancing clinical processes. This proposition could be added to the current tools for finding endometrial cancer early, leading to better patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信