一种基于计算机的人体颈椎尺寸特征自动识别方法

Nicola Cappetti , Luca Di Angelo , Carlotta Fontana , Antonio Marzola
{"title":"一种基于计算机的人体颈椎尺寸特征自动识别方法","authors":"Nicola Cappetti ,&nbsp;Luca Di Angelo ,&nbsp;Carlotta Fontana ,&nbsp;Antonio Marzola","doi":"10.1016/j.cmpbup.2024.100175","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Accurately measuring cervical vertebrae dimensions is crucial for diagnosing conditions, planning surgeries, and studying morphological variations related to gender, age, and ethnicity. However, traditional manual measurement methods, due to their labour-intensive nature, time-consuming process, and susceptibility to operator variability, often fall short in providing the objectivity required for reliable measurements. This study addresses these limitations by introducing a novel computer-based method for automatically identifying the dimensional features of human cervical vertebrae, leveraging 3D geometric models obtained from CT or 3D scanning.</div></div><div><h3>Methods</h3><div>The proposed approach involves defining a local coordinate system and establishing a set of rules and parameters to evaluate the typical dimensional features of the vertebral body, foramen, and spinous process in the sagittal and coronal planes of the high-density point cloud of the cervical vertebra model. This system provides a consistent measurement reference frame, improving the method's reliability and objectivity. Based on this reference system, the method automates the traditional standard protocol, typically performed manually by radiologists, through an algorithmic approach.</div></div><div><h3>Results</h3><div>The performance of the computer-based method was compared with the traditional manual approach using a dataset of nine complete cervical tracts. Manual measurements were conducted following a defined protocol. The manual method demonstrated poor repeatability and reproducibility, with substantial differences between the minimum and maximum values for the measured features in intra- and inter-operator evaluations. In contrast, the measurements obtained with the proposed computer-based method were consistent and repeatable.</div></div><div><h3>Conclusions</h3><div>The proposed computer-based method provides a more reliable and objective approach for measuring the dimensional features of cervical vertebrae. It establishes a procedural standard for deducing the morphological characteristics of cervical vertebrae, with significant implications for clinical applications, such as surgical planning and diagnosis, as well as for forensic anthropology and spinal anatomy research. Further refinement and validation of the algorithmic rules and investigations into the influence of morphological abnormalities are necessary to improve the method's accuracy.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100175"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae\",\"authors\":\"Nicola Cappetti ,&nbsp;Luca Di Angelo ,&nbsp;Carlotta Fontana ,&nbsp;Antonio Marzola\",\"doi\":\"10.1016/j.cmpbup.2024.100175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>Accurately measuring cervical vertebrae dimensions is crucial for diagnosing conditions, planning surgeries, and studying morphological variations related to gender, age, and ethnicity. However, traditional manual measurement methods, due to their labour-intensive nature, time-consuming process, and susceptibility to operator variability, often fall short in providing the objectivity required for reliable measurements. This study addresses these limitations by introducing a novel computer-based method for automatically identifying the dimensional features of human cervical vertebrae, leveraging 3D geometric models obtained from CT or 3D scanning.</div></div><div><h3>Methods</h3><div>The proposed approach involves defining a local coordinate system and establishing a set of rules and parameters to evaluate the typical dimensional features of the vertebral body, foramen, and spinous process in the sagittal and coronal planes of the high-density point cloud of the cervical vertebra model. This system provides a consistent measurement reference frame, improving the method's reliability and objectivity. Based on this reference system, the method automates the traditional standard protocol, typically performed manually by radiologists, through an algorithmic approach.</div></div><div><h3>Results</h3><div>The performance of the computer-based method was compared with the traditional manual approach using a dataset of nine complete cervical tracts. Manual measurements were conducted following a defined protocol. The manual method demonstrated poor repeatability and reproducibility, with substantial differences between the minimum and maximum values for the measured features in intra- and inter-operator evaluations. In contrast, the measurements obtained with the proposed computer-based method were consistent and repeatable.</div></div><div><h3>Conclusions</h3><div>The proposed computer-based method provides a more reliable and objective approach for measuring the dimensional features of cervical vertebrae. It establishes a procedural standard for deducing the morphological characteristics of cervical vertebrae, with significant implications for clinical applications, such as surgical planning and diagnosis, as well as for forensic anthropology and spinal anatomy research. Further refinement and validation of the algorithmic rules and investigations into the influence of morphological abnormalities are necessary to improve the method's accuracy.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"7 \",\"pages\":\"Article 100175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990024000429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990024000429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的准确测量颈椎尺寸对于诊断疾病、计划手术以及研究与性别、年龄和种族相关的形态变化至关重要。然而,传统的人工测量方法,由于其劳动密集型的性质,耗时的过程,易受操作者的变化,往往不能提供可靠测量所需的客观性。本研究通过引入一种新的基于计算机的方法,利用CT或3D扫描获得的三维几何模型,自动识别人类颈椎的尺寸特征,从而解决了这些局限性。方法定义局部坐标系,建立一套规则和参数,评价颈椎模型高密度点云矢状面和冠状面椎体、椎孔和棘突的典型尺寸特征。该系统提供了一致的测量参考框架,提高了方法的可靠性和客观性。基于该参考系统,该方法通过算法方法使传统的标准方案(通常由放射科医生手动执行)自动化。结果利用9个完整宫颈束的数据集,比较了基于计算机的方法与传统手工方法的性能。人工测量按照规定的方案进行。手工方法的重复性和再现性较差,在操作者内部和操作者之间的评估中,测量特征的最小值和最大值之间存在很大差异。相比之下,采用基于计算机的方法获得的测量结果是一致的和可重复的。结论基于计算机的方法为测量颈椎的尺寸特征提供了一种更加可靠和客观的方法。它建立了一个推断颈椎形态特征的程序标准,对临床应用,如手术计划和诊断,以及法医人类学和脊柱解剖学研究具有重要意义。为了提高算法的准确性,有必要进一步改进和验证算法规则,并研究形态学异常的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae

Background and objective

Accurately measuring cervical vertebrae dimensions is crucial for diagnosing conditions, planning surgeries, and studying morphological variations related to gender, age, and ethnicity. However, traditional manual measurement methods, due to their labour-intensive nature, time-consuming process, and susceptibility to operator variability, often fall short in providing the objectivity required for reliable measurements. This study addresses these limitations by introducing a novel computer-based method for automatically identifying the dimensional features of human cervical vertebrae, leveraging 3D geometric models obtained from CT or 3D scanning.

Methods

The proposed approach involves defining a local coordinate system and establishing a set of rules and parameters to evaluate the typical dimensional features of the vertebral body, foramen, and spinous process in the sagittal and coronal planes of the high-density point cloud of the cervical vertebra model. This system provides a consistent measurement reference frame, improving the method's reliability and objectivity. Based on this reference system, the method automates the traditional standard protocol, typically performed manually by radiologists, through an algorithmic approach.

Results

The performance of the computer-based method was compared with the traditional manual approach using a dataset of nine complete cervical tracts. Manual measurements were conducted following a defined protocol. The manual method demonstrated poor repeatability and reproducibility, with substantial differences between the minimum and maximum values for the measured features in intra- and inter-operator evaluations. In contrast, the measurements obtained with the proposed computer-based method were consistent and repeatable.

Conclusions

The proposed computer-based method provides a more reliable and objective approach for measuring the dimensional features of cervical vertebrae. It establishes a procedural standard for deducing the morphological characteristics of cervical vertebrae, with significant implications for clinical applications, such as surgical planning and diagnosis, as well as for forensic anthropology and spinal anatomy research. Further refinement and validation of the algorithmic rules and investigations into the influence of morphological abnormalities are necessary to improve the method's accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信