度序列多面体中的整数点

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Eleonore Bach , Friedrich Eisenbrand , Rom Pinchasi
{"title":"度序列多面体中的整数点","authors":"Eleonore Bach ,&nbsp;Friedrich Eisenbrand ,&nbsp;Rom Pinchasi","doi":"10.1016/j.disopt.2024.100867","DOIUrl":null,"url":null,"abstract":"<div><div>An integer vector <span><math><mrow><mi>b</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> is a <em>degree sequence</em> if there exists a hypergraph with vertices <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></math></span> such that each <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the number of hyperedges containing <span><math><mi>i</mi></math></span>. The <em>degree-sequence polytope</em> <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is the convex hull of all degree sequences. We show that all but a <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>Ω</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> via linear programming techniques. This is substantially faster than the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> running time of the current-best algorithm for the degree-sequence problem. We also show that for <span><math><mrow><mi>d</mi><mo>⩾</mo><mn>98</mn></mrow></math></span>, <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> contains integer points that are not degree sequences. Furthermore, we prove that both the degree sequence problem itself and the linear optimization problem over <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are <span><math><mi>NP</mi></math></span>-hard. The latter complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in <span><math><mi>d</mi></math></span> and the number of hyperedges.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100867"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer points in the degree-sequence polytope\",\"authors\":\"Eleonore Bach ,&nbsp;Friedrich Eisenbrand ,&nbsp;Rom Pinchasi\",\"doi\":\"10.1016/j.disopt.2024.100867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An integer vector <span><math><mrow><mi>b</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> is a <em>degree sequence</em> if there exists a hypergraph with vertices <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></math></span> such that each <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the number of hyperedges containing <span><math><mi>i</mi></math></span>. The <em>degree-sequence polytope</em> <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is the convex hull of all degree sequences. We show that all but a <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>Ω</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msup></math></span> via linear programming techniques. This is substantially faster than the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> running time of the current-best algorithm for the degree-sequence problem. We also show that for <span><math><mrow><mi>d</mi><mo>⩾</mo><mn>98</mn></mrow></math></span>, <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> contains integer points that are not degree sequences. Furthermore, we prove that both the degree sequence problem itself and the linear optimization problem over <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are <span><math><mi>NP</mi></math></span>-hard. The latter complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in <span><math><mi>d</mi></math></span> and the number of hyperedges.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"55 \",\"pages\":\"Article 100867\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157252862400046X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862400046X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个顶点为{1,…,d}的超图,且每个bi是包含i的超边的个数,则整数向量b∈Zd是一个度序列。度序列多边形Zd是所有度序列的凸包。我们证明了除2−Ω(d)分数外,在度序列多体中所有的整数向量都是度序列。此外,这些点的对应超图可以通过线性规划技术在时间2O(d)内计算得到。这大大快于当前最佳度序列问题算法的20 (d2)运行时间。我们还显示,对于d小于98,Zd包含不是度序列的整数点。进一步证明了度序列问题本身和Zd上的线性优化问题都是np困难的。后者补充了Deza等人(2018)最近的结果,他们提供了一种算法,该算法是d和超边数量的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integer points in the degree-sequence polytope
An integer vector bZd is a degree sequence if there exists a hypergraph with vertices {1,,d} such that each bi is the number of hyperedges containing i. The degree-sequence polytope Zd is the convex hull of all degree sequences. We show that all but a 2Ω(d) fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time 2O(d) via linear programming techniques. This is substantially faster than the 2O(d2) running time of the current-best algorithm for the degree-sequence problem. We also show that for d98, Zd contains integer points that are not degree sequences. Furthermore, we prove that both the degree sequence problem itself and the linear optimization problem over Zd are NP-hard. The latter complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in d and the number of hyperedges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信