凸二部图顶点边缘控制问题的线性时间算法

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yasemin Büyükçolak
{"title":"凸二部图顶点边缘控制问题的线性时间算法","authors":"Yasemin Büyükçolak","doi":"10.1016/j.disopt.2024.100877","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span> <em>ve-dominates</em> all edges incident to any vertex in the closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow></mrow></math></span>. A subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is <em>a vertex-edge dominating set</em> if, for each edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span> such that <span><math><mi>u</mi></math></span> ve-dominates <span><math><mi>e</mi></math></span>. The objective of the <em>ve-domination problem</em> is to find a minimum cardinality ve-dominating set in <span><math><mi>G</mi></math></span>. In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub></mrow></math></span> for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100877"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs\",\"authors\":\"Yasemin Büyükçolak\",\"doi\":\"10.1016/j.disopt.2024.100877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span> <em>ve-dominates</em> all edges incident to any vertex in the closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow></mrow></math></span>. A subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is <em>a vertex-edge dominating set</em> if, for each edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span> such that <span><math><mi>u</mi></math></span> ve-dominates <span><math><mi>e</mi></math></span>. The objective of the <em>ve-domination problem</em> is to find a minimum cardinality ve-dominating set in <span><math><mi>G</mi></math></span>. In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>v</mi><mi>e</mi></mrow></msub></mrow></math></span> for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"55 \",\"pages\":\"Article 100877\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000562\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000562","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G=(V,E),顶点u∈V -优于闭合邻域N[u]中任意顶点的所有边。如果对每条边e∈e,存在一个顶点u∈D,使u∈e优于e,则子集D是一个点边控制集。该控制问题的目标是在g中寻找最小基数ve控制集。本文给出了寻找凸二部图的最小基数ve控制集的线性时间算法,该算法是二部置换图的一个超类和二部图的一个子类。其中,支配问题分别在线性时间和np完全时间内可解。我们还建立了凸二部图的γve=ive关系。我们的方法利用凸二部图的链分解,允许有效地识别最小的支配集,并将算法见解扩展到特定结构化图类的支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs
Given a graph G=(V,E), a vertex uV ve-dominates all edges incident to any vertex in the closed neighborhood N[u]. A subset DV is a vertex-edge dominating set if, for each edge eE, there exists a vertex uD such that u ve-dominates e. The objective of the ve-domination problem is to find a minimum cardinality ve-dominating set in G. In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship γve=ive for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信