基于级联LSTM-GRU模型的蚯蚓优化算法的android恶意软件检测

Brij B. Gupta , Akshat Gaurav , Varsha Arya , Shavi Bansal , Razaz Waheeb Attar , Ahmed Alhomoud , Konstantinos Psannis
{"title":"基于级联LSTM-GRU模型的蚯蚓优化算法的android恶意软件检测","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya ,&nbsp;Shavi Bansal ,&nbsp;Razaz Waheeb Attar ,&nbsp;Ahmed Alhomoud ,&nbsp;Konstantinos Psannis","doi":"10.1016/j.csa.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><div>The rise in mobile malware risks brought on by the explosion of Android smartphones required more efficient detection techniques. Inspired by a cascade of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, optimized using the Earthworm Optimization Algorithm (EOA), this study presents an android malware detection model. The paper used random forest model for feature selection. With a 99% accuracy and the lowest loss values, the proposed model performs better than conventional models including GRU, LSTM, RNN, Logistic Regression, and SVM.. The findings highlight the possibility of proposed method in improving Android malware detection, thereby providing a strong answer in the changing scene of cybersecurity.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection\",\"authors\":\"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya ,&nbsp;Shavi Bansal ,&nbsp;Razaz Waheeb Attar ,&nbsp;Ahmed Alhomoud ,&nbsp;Konstantinos Psannis\",\"doi\":\"10.1016/j.csa.2024.100083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rise in mobile malware risks brought on by the explosion of Android smartphones required more efficient detection techniques. Inspired by a cascade of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, optimized using the Earthworm Optimization Algorithm (EOA), this study presents an android malware detection model. The paper used random forest model for feature selection. With a 99% accuracy and the lowest loss values, the proposed model performs better than conventional models including GRU, LSTM, RNN, Logistic Regression, and SVM.. The findings highlight the possibility of proposed method in improving Android malware detection, thereby providing a strong answer in the changing scene of cybersecurity.</div></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"3 \",\"pages\":\"Article 100083\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Android智能手机的爆炸式增长所带来的移动恶意软件风险的上升需要更有效的检测技术。受长短期记忆(LSTM)和门控循环单元(GRU)网络级联的启发,使用蚯蚓优化算法(EOA)进行优化,本研究提出了一种android恶意软件检测模型。本文采用随机森林模型进行特征选择。该模型具有99%的准确率和最低的损失值,优于GRU、LSTM、RNN、Logistic回归和SVM等传统模型。研究结果突出了本文提出的方法在改进Android恶意软件检测方面的可能性,从而在不断变化的网络安全环境中提供了强有力的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection
The rise in mobile malware risks brought on by the explosion of Android smartphones required more efficient detection techniques. Inspired by a cascade of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, optimized using the Earthworm Optimization Algorithm (EOA), this study presents an android malware detection model. The paper used random forest model for feature selection. With a 99% accuracy and the lowest loss values, the proposed model performs better than conventional models including GRU, LSTM, RNN, Logistic Regression, and SVM.. The findings highlight the possibility of proposed method in improving Android malware detection, thereby providing a strong answer in the changing scene of cybersecurity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信