{"title":"基于偏好拓扑优化的虚拟现实交互式三维结构设计","authors":"Zhi Li, Ting-Uei Lee, Yi Min Xie","doi":"10.1016/j.cad.2024.103826","DOIUrl":null,"url":null,"abstract":"<div><div>Innovative load-bearing structures often emerge from a fine balance between creative forms and engineering principles. While preference-based topology optimization methods have advanced structural design by considering designers’ geometric preferences, they struggle with visualizing and editing complex 3D details crucial for diverse design options. To overcome this bottleneck, here we propose the improved bidirectional evolutionary structural optimization considering subjective preferences (ISP-BESO) method. This method introduces a similarity constraint that enables precise control over subjective preferences in optimized structures. Then, a design exploration strategy is proposed by integrating virtual reality (VR) with topology optimization for the interactive creation of desirable 3D structures. The strategy employs VR sculpting to offer immersive visualization and real-time feedback, guiding material redistribution during optimization. This workflow can iteratively produce innovative and efficient structures. Adjusting target similarity in ISP-BESO steers designs toward performance-driven or preference-driven outcomes. A museum design example demonstrates the practical potential of this strategy.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"180 ","pages":"Article 103826"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive 3D structural design in virtual reality using preference-based topology optimization\",\"authors\":\"Zhi Li, Ting-Uei Lee, Yi Min Xie\",\"doi\":\"10.1016/j.cad.2024.103826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Innovative load-bearing structures often emerge from a fine balance between creative forms and engineering principles. While preference-based topology optimization methods have advanced structural design by considering designers’ geometric preferences, they struggle with visualizing and editing complex 3D details crucial for diverse design options. To overcome this bottleneck, here we propose the improved bidirectional evolutionary structural optimization considering subjective preferences (ISP-BESO) method. This method introduces a similarity constraint that enables precise control over subjective preferences in optimized structures. Then, a design exploration strategy is proposed by integrating virtual reality (VR) with topology optimization for the interactive creation of desirable 3D structures. The strategy employs VR sculpting to offer immersive visualization and real-time feedback, guiding material redistribution during optimization. This workflow can iteratively produce innovative and efficient structures. Adjusting target similarity in ISP-BESO steers designs toward performance-driven or preference-driven outcomes. A museum design example demonstrates the practical potential of this strategy.</div></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"180 \",\"pages\":\"Article 103826\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001532\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001532","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Interactive 3D structural design in virtual reality using preference-based topology optimization
Innovative load-bearing structures often emerge from a fine balance between creative forms and engineering principles. While preference-based topology optimization methods have advanced structural design by considering designers’ geometric preferences, they struggle with visualizing and editing complex 3D details crucial for diverse design options. To overcome this bottleneck, here we propose the improved bidirectional evolutionary structural optimization considering subjective preferences (ISP-BESO) method. This method introduces a similarity constraint that enables precise control over subjective preferences in optimized structures. Then, a design exploration strategy is proposed by integrating virtual reality (VR) with topology optimization for the interactive creation of desirable 3D structures. The strategy employs VR sculpting to offer immersive visualization and real-time feedback, guiding material redistribution during optimization. This workflow can iteratively produce innovative and efficient structures. Adjusting target similarity in ISP-BESO steers designs toward performance-driven or preference-driven outcomes. A museum design example demonstrates the practical potential of this strategy.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.