基于黏度近似法的Julia集、Mandelbrot集和生物形态的生成

Q3 Mathematics
Rimsha Babar, Wutiphol Sintunavarat
{"title":"基于黏度近似法的Julia集、Mandelbrot集和生物形态的生成","authors":"Rimsha Babar,&nbsp;Wutiphol Sintunavarat","doi":"10.1016/j.rico.2025.100516","DOIUrl":null,"url":null,"abstract":"<div><div>Iterative methodology has been demonstrated to be an achievement in the age of fractals. A novel method based on the viscosity approximation approach, one of the most popular iterative techniques for identifying non-linear operator fixed points, for visualizing Mandelbrot and Julia sets for a complex polynomial <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi></mrow></math></span>, where <span><math><mi>z</mi></math></span> is a complex variable, <span><math><mrow><mi>m</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><mspace></mspace><mi>b</mi><mo>∈</mo><mi>ℂ</mi></mrow></math></span> are parameters, is presented in this paper. Using the proposed approximation method, we establish a novel escape criterion for producing Julia and Mandelbrot sets. This method yields biomorphs for any complex function. Additionally, we visualize the sets using the escape time approach and the suggested iteration. Then, using graphical and numerical experiments, we explore how the shape of the resulting sets changes depending on the iteration parameters. The examples show that this transformation can be highly complex, and we can acquire a wide range of shapes.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100516"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generation of Julia sets, Mandelbrot sets and biomorphs via a modification of the viscosity approximation method\",\"authors\":\"Rimsha Babar,&nbsp;Wutiphol Sintunavarat\",\"doi\":\"10.1016/j.rico.2025.100516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iterative methodology has been demonstrated to be an achievement in the age of fractals. A novel method based on the viscosity approximation approach, one of the most popular iterative techniques for identifying non-linear operator fixed points, for visualizing Mandelbrot and Julia sets for a complex polynomial <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi></mrow></math></span>, where <span><math><mi>z</mi></math></span> is a complex variable, <span><math><mrow><mi>m</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><mspace></mspace><mi>b</mi><mo>∈</mo><mi>ℂ</mi></mrow></math></span> are parameters, is presented in this paper. Using the proposed approximation method, we establish a novel escape criterion for producing Julia and Mandelbrot sets. This method yields biomorphs for any complex function. Additionally, we visualize the sets using the escape time approach and the suggested iteration. Then, using graphical and numerical experiments, we explore how the shape of the resulting sets changes depending on the iteration parameters. The examples show that this transformation can be highly complex, and we can acquire a wide range of shapes.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"18 \",\"pages\":\"Article 100516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

迭代方法已被证明是分形时代的一项成就。本文提出了一种基于黏度近似法的新方法,该方法是识别非线性算子不动点的最流行的迭代技术之一,用于显示复数多项式G(z)=zm+az+b的Mandelbrot集和Julia集,其中z是一个复变量,m∈N∈{1},A,b∈是参数。利用所提出的近似方法,我们建立了一个新的产生Julia集和Mandelbrot集的逃避准则。这种方法可以产生任何复杂函数的生物形态。此外,我们使用逃逸时间方法和建议的迭代来可视化这些集合。然后,使用图形和数值实验,我们探讨了结果集的形状如何随着迭代参数的变化而变化。实例表明,这种转换可以非常复杂,并且我们可以获得各种形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generation of Julia sets, Mandelbrot sets and biomorphs via a modification of the viscosity approximation method
Iterative methodology has been demonstrated to be an achievement in the age of fractals. A novel method based on the viscosity approximation approach, one of the most popular iterative techniques for identifying non-linear operator fixed points, for visualizing Mandelbrot and Julia sets for a complex polynomial G(z)=zm+az+b, where z is a complex variable, mN{1} and a,b are parameters, is presented in this paper. Using the proposed approximation method, we establish a novel escape criterion for producing Julia and Mandelbrot sets. This method yields biomorphs for any complex function. Additionally, we visualize the sets using the escape time approach and the suggested iteration. Then, using graphical and numerical experiments, we explore how the shape of the resulting sets changes depending on the iteration parameters. The examples show that this transformation can be highly complex, and we can acquire a wide range of shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信