非线性约束优化的gpu驻留线性求解迭代方法

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Kasia Świrydowicz , Nicholson Koukpaizan , Maksudul Alam , Shaked Regev , Michael Saunders , Slaven Peleš
{"title":"非线性约束优化的gpu驻留线性求解迭代方法","authors":"Kasia Świrydowicz ,&nbsp;Nicholson Koukpaizan ,&nbsp;Maksudul Alam ,&nbsp;Shaked Regev ,&nbsp;Michael Saunders ,&nbsp;Slaven Peleš","doi":"10.1016/j.parco.2024.103123","DOIUrl":null,"url":null,"abstract":"<div><div>Linear solvers are major computational bottlenecks in a wide range of decision support and optimization computations. The challenges become even more pronounced on heterogeneous hardware, where traditional sparse numerical linear algebra methods are often inefficient. For example, methods for solving ill-conditioned linear systems have relied on conditional branching, which degrades performance on hardware accelerators such as graphical processing units (GPUs). To improve the efficiency of solving ill-conditioned systems, our computational strategy separates computations that are efficient on GPUs from those that need to run on traditional central processing units (CPUs). Our strategy maximizes the reuse of expensive CPU computations. Iterative methods, which thus far have not been broadly used for ill-conditioned linear systems, play an important role in our approach. In particular, we extend ideas from Arioli et al., (2007) to implement iterative refinement using inexact LU factors and flexible generalized minimal residual (FGMRES), with the aim of efficient performance on GPUs. We focus on solutions that are effective within broader application contexts, and discuss how early performance tests could be improved to be more predictive of the performance in a realistic environment.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103123"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative methods in GPU-resident linear solvers for nonlinear constrained optimization\",\"authors\":\"Kasia Świrydowicz ,&nbsp;Nicholson Koukpaizan ,&nbsp;Maksudul Alam ,&nbsp;Shaked Regev ,&nbsp;Michael Saunders ,&nbsp;Slaven Peleš\",\"doi\":\"10.1016/j.parco.2024.103123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Linear solvers are major computational bottlenecks in a wide range of decision support and optimization computations. The challenges become even more pronounced on heterogeneous hardware, where traditional sparse numerical linear algebra methods are often inefficient. For example, methods for solving ill-conditioned linear systems have relied on conditional branching, which degrades performance on hardware accelerators such as graphical processing units (GPUs). To improve the efficiency of solving ill-conditioned systems, our computational strategy separates computations that are efficient on GPUs from those that need to run on traditional central processing units (CPUs). Our strategy maximizes the reuse of expensive CPU computations. Iterative methods, which thus far have not been broadly used for ill-conditioned linear systems, play an important role in our approach. In particular, we extend ideas from Arioli et al., (2007) to implement iterative refinement using inexact LU factors and flexible generalized minimal residual (FGMRES), with the aim of efficient performance on GPUs. We focus on solutions that are effective within broader application contexts, and discuss how early performance tests could be improved to be more predictive of the performance in a realistic environment.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"123 \",\"pages\":\"Article 103123\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000619\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000619","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在广泛的决策支持和优化计算中,线性求解是主要的计算瓶颈。在异构硬件上,挑战变得更加明显,传统的稀疏数值线性代数方法通常效率低下。例如,求解病态线性系统的方法依赖于条件分支,这降低了图形处理单元(gpu)等硬件加速器的性能。为了提高求解病态系统的效率,我们的计算策略将gpu上的高效计算与需要在传统中央处理器(cpu)上运行的计算分离开来。我们的策略最大限度地重用昂贵的CPU计算。迭代方法迄今尚未广泛用于病态线性系统,但在我们的方法中起着重要作用。特别是,我们扩展了Arioli等人(2007)的思想,使用不精确的LU因子和灵活的广义最小残差(FGMRES)实现迭代细化,目的是在gpu上实现高效性能。我们将重点关注在更广泛的应用程序上下文中有效的解决方案,并讨论如何改进早期的性能测试,以便更好地预测现实环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative methods in GPU-resident linear solvers for nonlinear constrained optimization
Linear solvers are major computational bottlenecks in a wide range of decision support and optimization computations. The challenges become even more pronounced on heterogeneous hardware, where traditional sparse numerical linear algebra methods are often inefficient. For example, methods for solving ill-conditioned linear systems have relied on conditional branching, which degrades performance on hardware accelerators such as graphical processing units (GPUs). To improve the efficiency of solving ill-conditioned systems, our computational strategy separates computations that are efficient on GPUs from those that need to run on traditional central processing units (CPUs). Our strategy maximizes the reuse of expensive CPU computations. Iterative methods, which thus far have not been broadly used for ill-conditioned linear systems, play an important role in our approach. In particular, we extend ideas from Arioli et al., (2007) to implement iterative refinement using inexact LU factors and flexible generalized minimal residual (FGMRES), with the aim of efficient performance on GPUs. We focus on solutions that are effective within broader application contexts, and discuss how early performance tests could be improved to be more predictive of the performance in a realistic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信