{"title":"资源高效YOLO模型在粪便显微镜下快速准确识别肠道寄生虫卵的比较分析","authors":"Kotteswaran Venkatesan , Muthunayagam Muthulakshmi , Balaji Prasanalakshmi , Elangovan Karthickeien , Harshini Pabbisetty , Rahayu Syarifah Bahiyah","doi":"10.1016/j.ibmed.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Faster and reliable recognition of the specific species of intestinal parasite eggs in stool microscopic images is required for targeted and quick intervention of soil transmitted helminths (STH) disease. The main objective of the proposed work is to identify the effective light weight basic yolo models among the recent compact yolo variants such as yolov5n, yolov5s, yolov7, yolov7-tiny, yolov8n, yolov8s, yolov10n and yolov10s, that could assist in rapid and accurate recognition of 11 parasite species egg. The real time performance of the compact yolo models have been analyzed in embedded platforms: Raspberry Pi 4, Intel upSquared with the Neural Compute Stick 2 and Jetson Nano. Finally, Gradient-weighted class activation mapping (Grad-CAM) has been used as an explainable AI (XAI) visualization method to elucidate the egg detection performance of the proposed models. Yolov7-tiny achieved the overall highest mean Average Precision (mAP) score of 98.7 %. On contrary, yolov10n yielded highest recall and F1 score of 100 % and 98.6 %. On other hand, yolov8n took least inference time with processing speed of 55 frames per second with Jetson Nano. Notably, the proposed framework demonstrates superior performance in detection of egg classes - Enterobius vermicularis, Hookworm egg, Opisthorchis viverrine, Trichuris trichiura, and Taenia spp. which is a significant outcome of the current research. Further, Grad-CAM depicts the discriminative power of unique features in parasite eggs. Thus, this study demonstrates the effectiveness, compactness and inference latency analysis of basic compact yolo variants in learning the specific patterns, texture and shape of parasitic egg species, thereby potentially enhancing the diagnostic accuracy of STH.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100212"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of resource-efficient YOLO models for rapid and accurate recognition of intestinal parasitic eggs in stool microscopy\",\"authors\":\"Kotteswaran Venkatesan , Muthunayagam Muthulakshmi , Balaji Prasanalakshmi , Elangovan Karthickeien , Harshini Pabbisetty , Rahayu Syarifah Bahiyah\",\"doi\":\"10.1016/j.ibmed.2025.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Faster and reliable recognition of the specific species of intestinal parasite eggs in stool microscopic images is required for targeted and quick intervention of soil transmitted helminths (STH) disease. The main objective of the proposed work is to identify the effective light weight basic yolo models among the recent compact yolo variants such as yolov5n, yolov5s, yolov7, yolov7-tiny, yolov8n, yolov8s, yolov10n and yolov10s, that could assist in rapid and accurate recognition of 11 parasite species egg. The real time performance of the compact yolo models have been analyzed in embedded platforms: Raspberry Pi 4, Intel upSquared with the Neural Compute Stick 2 and Jetson Nano. Finally, Gradient-weighted class activation mapping (Grad-CAM) has been used as an explainable AI (XAI) visualization method to elucidate the egg detection performance of the proposed models. Yolov7-tiny achieved the overall highest mean Average Precision (mAP) score of 98.7 %. On contrary, yolov10n yielded highest recall and F1 score of 100 % and 98.6 %. On other hand, yolov8n took least inference time with processing speed of 55 frames per second with Jetson Nano. Notably, the proposed framework demonstrates superior performance in detection of egg classes - Enterobius vermicularis, Hookworm egg, Opisthorchis viverrine, Trichuris trichiura, and Taenia spp. which is a significant outcome of the current research. Further, Grad-CAM depicts the discriminative power of unique features in parasite eggs. Thus, this study demonstrates the effectiveness, compactness and inference latency analysis of basic compact yolo variants in learning the specific patterns, texture and shape of parasitic egg species, thereby potentially enhancing the diagnostic accuracy of STH.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
更快、可靠地识别粪便显微图像中肠道寄生虫卵的特定种类,是有针对性、快速干预土壤传播蠕虫病的必要条件。本研究的主要目的是在最近的yolov5n、yolov5s、yolov7、yolov7-tiny、yolov8n、yolov8s、yolov10n和yolov10s等紧凑型yolov5n中鉴定出有效的轻量化yolov基本模型,以帮助快速准确地识别11种寄生虫卵。在嵌入式平台上分析了紧凑yolo模型的实时性能:Raspberry Pi 4, Intel upSquared with Neural Compute Stick 2和Jetson Nano。最后,利用梯度加权类激活映射(Grad-CAM)作为一种可解释的人工智能(XAI)可视化方法来阐明所提出模型的卵子检测性能。Yolov7-tiny获得了98.7%的总体最高平均平均精度(mAP)评分。相反,yolov10n的召回率和F1得分分别为100%和98.6%。另一方面,yolov8n使用Jetson Nano的推理时间最少,处理速度为55帧/秒。值得注意的是,所提出的框架在检测卵类——蠕虫肠虫、钩虫卵、猪毛蛇、毛滴虫和带绦虫等方面表现出优异的性能,这是当前研究的一个重要成果。此外,Grad-CAM描述了寄生虫卵中独特特征的鉴别能力。因此,本研究证明了基本紧凑yolo变异在学习寄生虫种的特定模式、纹理和形状方面的有效性、紧凑性和推理延迟分析,从而有可能提高STH的诊断准确性。
Comparative analysis of resource-efficient YOLO models for rapid and accurate recognition of intestinal parasitic eggs in stool microscopy
Faster and reliable recognition of the specific species of intestinal parasite eggs in stool microscopic images is required for targeted and quick intervention of soil transmitted helminths (STH) disease. The main objective of the proposed work is to identify the effective light weight basic yolo models among the recent compact yolo variants such as yolov5n, yolov5s, yolov7, yolov7-tiny, yolov8n, yolov8s, yolov10n and yolov10s, that could assist in rapid and accurate recognition of 11 parasite species egg. The real time performance of the compact yolo models have been analyzed in embedded platforms: Raspberry Pi 4, Intel upSquared with the Neural Compute Stick 2 and Jetson Nano. Finally, Gradient-weighted class activation mapping (Grad-CAM) has been used as an explainable AI (XAI) visualization method to elucidate the egg detection performance of the proposed models. Yolov7-tiny achieved the overall highest mean Average Precision (mAP) score of 98.7 %. On contrary, yolov10n yielded highest recall and F1 score of 100 % and 98.6 %. On other hand, yolov8n took least inference time with processing speed of 55 frames per second with Jetson Nano. Notably, the proposed framework demonstrates superior performance in detection of egg classes - Enterobius vermicularis, Hookworm egg, Opisthorchis viverrine, Trichuris trichiura, and Taenia spp. which is a significant outcome of the current research. Further, Grad-CAM depicts the discriminative power of unique features in parasite eggs. Thus, this study demonstrates the effectiveness, compactness and inference latency analysis of basic compact yolo variants in learning the specific patterns, texture and shape of parasitic egg species, thereby potentially enhancing the diagnostic accuracy of STH.