利用优化最小二乘支持向量机对某配电公司日分配能耗进行预测

IF 3.2 Q3 Mathematics
Marzia Ahmed , Mohd Herwan Sulaiman , Md. Maruf Hassan , Md. Atikur Rahaman , Mohammad Bin Amin
{"title":"利用优化最小二乘支持向量机对某配电公司日分配能耗进行预测","authors":"Marzia Ahmed ,&nbsp;Mohd Herwan Sulaiman ,&nbsp;Md. Maruf Hassan ,&nbsp;Md. Atikur Rahaman ,&nbsp;Mohammad Bin Amin","doi":"10.1016/j.rico.2025.100518","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate energy consumption forecasting is critical for efficient power distribution management. This study presents a novel approach for optimal allocation forecasting of energy consumption in a power distribution company, utilizing the Least Squares Support Vector Machine (LSSVM) optimized by novel variants of the Barnacle Mating Optimizer (BMO) such as the new Gooseneck Barnacle Optimizer and Selective Opposition-based constrained BMO. The optimized LSSVM hyper-parameters, specifically the regularization parameter (<span><math><mi>γ</mi></math></span>) and the kernel parameter (<span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>), were applied to test data to enhance accuracy guided by the Mean Absolute Prediction Error (MAPE), ensuring precise alignment of forecasted values with actual energy consumption data. The results indicate that the novel gooseneck barnacle base-optimized LSSVM provides a robust and reliable solution with accuracy 99.98% for daily energy consumption for allocation forecasting, making it a valuable tool for power distribution companies aiming to optimize their resource allocation and planning processes.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100518"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daily allocation of energy consumption forecasting of a power distribution company using optimized least squares support vector machine\",\"authors\":\"Marzia Ahmed ,&nbsp;Mohd Herwan Sulaiman ,&nbsp;Md. Maruf Hassan ,&nbsp;Md. Atikur Rahaman ,&nbsp;Mohammad Bin Amin\",\"doi\":\"10.1016/j.rico.2025.100518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate energy consumption forecasting is critical for efficient power distribution management. This study presents a novel approach for optimal allocation forecasting of energy consumption in a power distribution company, utilizing the Least Squares Support Vector Machine (LSSVM) optimized by novel variants of the Barnacle Mating Optimizer (BMO) such as the new Gooseneck Barnacle Optimizer and Selective Opposition-based constrained BMO. The optimized LSSVM hyper-parameters, specifically the regularization parameter (<span><math><mi>γ</mi></math></span>) and the kernel parameter (<span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>), were applied to test data to enhance accuracy guided by the Mean Absolute Prediction Error (MAPE), ensuring precise alignment of forecasted values with actual energy consumption data. The results indicate that the novel gooseneck barnacle base-optimized LSSVM provides a robust and reliable solution with accuracy 99.98% for daily energy consumption for allocation forecasting, making it a valuable tool for power distribution companies aiming to optimize their resource allocation and planning processes.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"18 \",\"pages\":\"Article 100518\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

准确的能耗预测是实现高效配电管理的关键。本文提出了一种基于最小二乘支持向量机(LSSVM)的配电公司能源消耗最优分配预测方法,该方法是由藤壶匹配优化器(BMO)的新变异优化而成的,如新的鹅颈藤壶优化器和基于选择性对立的约束BMO。将优化后的LSSVM超参数,特别是正则化参数(γ)和核参数(σ2)应用于测试数据,以平均绝对预测误差(MAPE)为指导,提高准确性,确保预测值与实际能耗数据精确一致。结果表明,基于鹅颈藤条基础优化的LSSVM模型对日能耗分配预测具有鲁棒性和可靠性,预测准确率达99.98%,为配电公司优化资源分配和规划过程提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Daily allocation of energy consumption forecasting of a power distribution company using optimized least squares support vector machine
Accurate energy consumption forecasting is critical for efficient power distribution management. This study presents a novel approach for optimal allocation forecasting of energy consumption in a power distribution company, utilizing the Least Squares Support Vector Machine (LSSVM) optimized by novel variants of the Barnacle Mating Optimizer (BMO) such as the new Gooseneck Barnacle Optimizer and Selective Opposition-based constrained BMO. The optimized LSSVM hyper-parameters, specifically the regularization parameter (γ) and the kernel parameter (σ2), were applied to test data to enhance accuracy guided by the Mean Absolute Prediction Error (MAPE), ensuring precise alignment of forecasted values with actual energy consumption data. The results indicate that the novel gooseneck barnacle base-optimized LSSVM provides a robust and reliable solution with accuracy 99.98% for daily energy consumption for allocation forecasting, making it a valuable tool for power distribution companies aiming to optimize their resource allocation and planning processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信